Skip to main content
Log in

Thermobifida fusca exoglucanase Cel6B is incompatible with the cellulosomal mode in contrast to endoglucanase Cel6A

  • Research Article
  • Published:
Systems and Synthetic Biology

Abstract

Cellulosomes are efficient cellulose-degradation systems produced by selected anaerobic bacteria. This multi-enzyme complex is assembled from a group of cellulases attached to a protein scaffold termed scaffoldin, mediated by a high-affinity protein–protein interaction between the enzyme-borne dockerin module and the cohesin module of the scaffoldin. The enzymatic complex is attached as a whole to the cellulosic substrate via a cellulose-binding module (CBM) on the scaffoldin subunit. In previous works, we have employed a synthetic biology approach to convert several of the free cellulases of the aerobic bacterium, Thermobifida fusca, into the cellulosomal mode by replacing each of the enzymes’ CBM with a dockerin. Here we show that although family six enzymes are not a part of any known cellulosomal system, the two family six enzymes of the T. fusca system (endoglucanase Cel6A and exoglucanase Cel6B) can be converted to work as cellulosomal enzymes. Indeed, the chimaeric dockerin-containing family six endoglucanase worked well as a cellulosomal enzyme, and proved to be more efficient than the parent enzyme when present in designer cellulosomes. In stark contrast, the chimaeric family six exoglucanase was markedly less efficient than the wild-type enzyme when mixed with other T. fusca cellulases, thus indicating its incompatibility with the cellulosomal mode of action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Barak Y, Handelsman T, Nakar D, Mechaly A, Lamed R, Shoham Y, Bayer EA (2005) Matching fusion-protein systems for affinity analysis of two interacting families of proteins: the cohesin–dockerin interaction. J Mol Recogit 18:491–501

    Article  CAS  Google Scholar 

  • Bayer EA, Morag E, Lamed R (1994) The cellulosome—a treasure-trove for biotechnology. Trends Biotechnol 12:378–386

    Article  Google Scholar 

  • Bayer EA, Belaich J-P, Shoham Y, Lamed R (2004) The cellulosomes: multi-enzyme machines for degradation of plant cell wall polysaccharides. Annu Rev Microbiol 58:521–554

    Article  CAS  PubMed  Google Scholar 

  • Bayer EA, Lamed R, Himmel ME (2007) The potential of cellulases and cellulosomes for cellulosic waste management. Curr Opin Biotechnol 18:237–245

    Article  CAS  PubMed  Google Scholar 

  • Bayer EA, Henrissat B, Lamed R (2008a) The cellulosome: a natural bacterial strategy to combat biomass recalcitrance. In: Himmel ME (ed) Biomass recalcitrance. Blackwell, London, pp 407–426

    Chapter  Google Scholar 

  • Bayer EA, Shoham Y, Lamed R (2008b) Cellulosome-enhanced conversion of biomass: on the road to bioethanol. In: Wall J, Harwood C, Demain AL (eds) Bioengergy. ASM Press, Washington, DC, pp 75–96

    Google Scholar 

  • Berdichevsky Y, Lamed R, Frenkel D, Gophna U, Bayer EA, Yaron S, Shoham Y, Benhar I (1999) Matrix-assisted refolding of single-chain Fv-cellulose binding domain fusion proteins. Protein Expr Purif 17:249–259

    Article  CAS  PubMed  Google Scholar 

  • Caspi J, Irwin D, Lamed R, Shoham Y, Fierobe H-P, Wilson DB, Bayer EA (2006) Thermobifida fusca family-6 cellulases as potential designer cellulosome components. Biocat Biotransform 24:3–12

    Article  CAS  Google Scholar 

  • Caspi J, Irwin D, Lamed R, Fierobe H-P, Wilson DB, Bayer EA (2008) Conversion of noncellulosomal Thermobifida fusca free exoglucanases into cellulosomal components: comparative impact on cellulose-degrading activity. J Biotechnol 135:351–357

    Article  CAS  PubMed  Google Scholar 

  • Caspi J, Barak Y, Haimovitz R, Irwin D, Lamed R, Wilson DB, Bayer EA (2009) Conversion of a Thermobifida fusca endoglucanase into the cellulosomal mode: effect of linker length and dockerin position. Appl Environ Microbiol 75:7335–7342

    Article  CAS  PubMed  Google Scholar 

  • Demain AL, Newcomb M, Wu JH (2005) Cellulase, clostridia, and ethanol. Microbiol Mol Biol Rev 69:124–154

    Article  CAS  PubMed  Google Scholar 

  • Ding S-Y, Bayer EA, Steiner D, Shoham Y, Lamed R (2000) A scaffoldin of the Bacteroides cellulosolvens cellulosome that contains 11 type II cohesins. J Bacteriol 182:4915–4925

    Article  CAS  PubMed  Google Scholar 

  • Doi RH, Kosugi A (2004) Cellulosomes: plant-cell-wall-degrading enzyme complexes. Nat Rev Microbiol 2:541–551

    Article  CAS  PubMed  Google Scholar 

  • Dror TW, Morag E, Rolider A, Bayer EA, Lamed R, Shoham Y (2003a) Regulation of the cellulosomal celS (cel48A) gene of Clostridium thermocellum is growth-rate dependent. J Bacteriol 185:3042–3048

    Article  CAS  PubMed  Google Scholar 

  • Dror TW, Rolider A, Bayer EA, Lamed R, Shoham Y (2003b) Regulation of expression of scaffoldin-related genes in Clostridium thermocellum. J Bacteriol 185:5109–5116

    Article  CAS  PubMed  Google Scholar 

  • Dror TW, Rolider A, Bayer EA, Lamed R, Shoham Y (2005) Regulation of major cellulosomal endoglucanases of Clostridium thermocellum differs from that of a prominent cellulosomal xylanase. J Bacteriol 187:2261–2266

    Article  CAS  PubMed  Google Scholar 

  • Fierobe H-P, Mechaly A, Tardif C, Belaich A, Lamed R, Shoham Y, Belaich J-P, Bayer EA (2001) Design and production of active cellulosome chimeras: selective incorporation of dockerin-containing enzymes into defined functional complexes. J Biol Chem 276:21257–21261

    Article  CAS  PubMed  Google Scholar 

  • Fierobe H-P, Bayer EA, Tardif C, Czjzek M, Mechaly A, Belaich A, Lamed R, Shoham Y, Belaich J-P (2002) Degradation of cellulose substrates by cellulosome chimeras: substrate targeting versus proximity of enzyme components. J Biol Chem 277:49621–49630

    Article  CAS  PubMed  Google Scholar 

  • Fierobe H-P, Mingardon F, Mechaly A, Belaich A, Rincon MT, Lamed R, Tardif C, Belaich J-P, Bayer EA (2005) Action of designer cellulosomes on homogeneous versus complex substrates: controlled incorporation of three distinct enzymes into a defined tri-functional scaffoldin. J Biol Chem 280:16325–16334

    Article  CAS  PubMed  Google Scholar 

  • Ghangas GS, Wilson DB (1988) Cloning of the Thermomonospora fusca endoglucanase E2 gene in Streptomyces lividans: affinity purification and functional domains of the cloned gene product. Appl Environ Microbiol 54:2521–2526

    CAS  PubMed  Google Scholar 

  • Haimovitz R, Barak Y, Morag E, Voronov-Goldman M, Lamed R, Bayer EA (2008) Cohesin-dockerin microarray: diverse specificities between two complementary families of interacting protein modules. Proteomics 8:968–979

    Article  CAS  PubMed  Google Scholar 

  • Irwin DC, Zhang S, Wilson DB (2000) Cloning, expression and characterization of a family 48 exocellulase, Cel48A, from Thermobifida fusca. Eur J Biochem 267:4988–4997

    Article  CAS  PubMed  Google Scholar 

  • Jindou S, Kajino T, Inagaki M, Karita S, Beguin P, Kimura T, Sakka K, Ohmiya K (2004) Interaction between a type-II dockerin domain and a type-II cohesin domain from Clostridium thermocellum cellulosome. Biosci Biotechnol Biochem 68:924–926

    Article  CAS  PubMed  Google Scholar 

  • Mechaly A, Yaron S, Lamed R, Fierobe H-P, Belaich A, Belaich J-P, Shoham Y, Bayer EA (2000) Cohesin-dockerin recognition in cellulosome assembly: experiment versus hypothesis. Proteins 39:170–177

    Article  CAS  PubMed  Google Scholar 

  • Mechaly A, Fierobe H-P, Belaich A, Belaich J-P, Lamed R, Shoham Y, Bayer EA (2001) Cohesin-dockerin interaction in cellulosome assembly: a single hydroxyl group of a dockerin domain distinguishes between non-recognition and high-affinity recognition. J Biol Chem 276:9883–9888 Erratum 19678

    Article  CAS  PubMed  Google Scholar 

  • Mingardon F, Chanal A, López-Contreras AM, Dray C, Bayer EA, Fierobe H-P (2007a) Incorporation of fungal cellulases in bacterial minicellulosomes yields viable, synergistically acting cellulolytic complexes. Appl Environ Microbiol 73:3822–3832

    Article  CAS  PubMed  Google Scholar 

  • Mingardon F, Chanal A, Tardif C, Bayer EA, Fierobe H-P (2007b) Exploration of new geometries in cellulosome-like chimeras. Appl Environ Microbiol 73:7138–7149

    Article  CAS  PubMed  Google Scholar 

  • Morag E, Lapidot A, Govorko D, Lamed R, Wilchek M, Bayer EA, Shoham Y (1995) Expression, purification and characterization of the cellulose-binding domain of the scaffoldin subunit from the cellulosome of Clostridium thermocellum. Appl Environ Microbiol 61:1980–1986

    CAS  PubMed  Google Scholar 

  • Newcomb M, Chen CY, Wu JH (2007) Induction of the celC operon of Clostridium thermocellum by laminaribiose. Proc Natl Acad Sci USA 104:3747–3752

    Article  CAS  PubMed  Google Scholar 

  • Pagès S, Belaich A, Belaich J-P, Morag E, Lamed R, Shoham Y, Bayer EA (1997) Species-specificity of the cohesin-dockerin interaction between Clostridium thermocellum and Clostridium cellulolyticum: prediction of specificity determinants of the dockerin domain. Proteins 29:517–527

    Article  PubMed  Google Scholar 

  • Teeri TT (1997) Crystalline cellulose degradation: new insight into the function of cellobiohydrolases. Trends Biotechnol 15:160–167

    Article  Google Scholar 

  • Wilson DB (2004) Studies of Thermobifida fusca plant cell wall degrading enzymes. Chem Rec 4:72–82

    Article  CAS  PubMed  Google Scholar 

  • Wilson DB (2009) Cellulases and biofuels. Curr Opin Biotechnol 20:295–299

    Article  CAS  PubMed  Google Scholar 

  • Yaron S, Morag E, Bayer EA, Lamed R, Shoham Y (1995) Expression, purification and subunit-binding properties of cohesins 2 and 3 of the Clostridium thermocellum cellulosome. FEBS Lett 360:121–124

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Lao G, Wilson DB (1995) Characterization of a Thermomonospora fusca exocellulase. Biochemistry 34:3386–3395

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the expert assistance of Sarah Ouanounou Moraïs throughout the stages of preparation of this manuscript. This research was supported by the Brazilian friends of the Weizmann institute of science Alternative Energy Research Initiative (research grants from Mr. Charles Rothschild, Mr. Mario Fleck, and Roberto, and Renata Ruhman), and by grants from the United States-Israel Binational Science Foundation (BSF), Jerusalem, Israel and by the Israel Science Foundation (Grant nos 966/09 and 159/07). E.A.B. holds The Maynard I. and Elaine Wishner Chair of Bio-organic Chemistry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward A. Bayer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caspi, J., Barak, Y., Haimovitz, R. et al. Thermobifida fusca exoglucanase Cel6B is incompatible with the cellulosomal mode in contrast to endoglucanase Cel6A. Syst Synth Biol 4, 193–201 (2010). https://doi.org/10.1007/s11693-010-9056-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11693-010-9056-1

Keywords

Navigation