Skip to main content

Fourier Transform Ion Cyclotron Resonance Mass Spectrometry for Plant Metabolite Profiling and Metabolite Identification

  • Protocol
  • First Online:
Plant Metabolomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 860))

Abstract

Mass spectrometry (MS) is usually the technique of choice for metabolomic studies where the volume of sample material is too limited for applications employing nuclear magnetic resonance (NMR) spectroscopy. With the advent of ultra-high accuracy mass spectrometers such as the Orbitrap (resolution ∼ 105) and the Fourier Transform Ion Cyclotron Resonance (FT-ICR) analysers (resolution potentially in excess of 106) there is the opportunity to generate an accurate mass fingerprint (often referred to as a profile since the variables are considered as effectively discrete) of an infused sample extract. In such data representations mass “peaks” are detected in the raw data and the centroid mass intensity calculated. The resolving power and sensitivity of these ultra-high accuracy mass analysers is such that metabolite signals from molecules containing naturally abundant elemental isotopes (e.g. 13C, 41K, 15N, 17O, 34S, and 37Cl) are visible in the data. Such is the instruments precision that it allows for the calculation of highly accurate elemental compositions for the unknown signals, thus aiding greatly in the selection of potential metabolite candidates for the annotation of unknowns prior to their confirmation by comparisons to analytical standards. The application of FT-ICR-MS to plant metabolomics has thus far been limited to a few studies and clear step-by-step methodologies are as yet unavailable. This chapter presents a rigorous method for the extraction and FT-ICR-MS analysis of plant leaf tissues as well as downstream data processing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

DI:

Direct infusion

FI:

Flow infusion

FT:

Fourier transform

ICR:

Ion cyclotron resonance

MS:

Mass spectrometry

ESI:

Electrospray ionisation

LTQ:

Linear trap quadrupole

CID:

Collision-induced dissociation

QC:

Quality control

PCA:

Principal components analysis

LDA:

Linear discriminant analysis

RF:

Random forest

References

  1. Brown, S.C., Kruppa, G., Dasseux, J.-L. (2005) Metabolomics applications of FT-ICR mass spectrometry. Mass Spec. Rev. 24, 223–231.

    Article  CAS  Google Scholar 

  2. Hughey, C.A., Rodgers, R.P., Marshall, A.G. (2002) Resolution of 11,000 compositionally distinct components in a single electrospray ionization Fourier transform ion cyclotron resonance mass spectrum of crude oil. Anal. Chem. 74, 4145–4149.

    Article  PubMed  CAS  Google Scholar 

  3. Barrow, M.P., Burkitt, W.I., Derrick, P.J. (2005) Principles of Fourier transform ion cyclotron mass spectrometry and its application in structural biology. The Analyst 130, 18–28.

    Article  PubMed  CAS  Google Scholar 

  4. Aharoni, A., De Vos, C.H.R., Verhoeven, H.A., Maliepaard, C.A., Kruppa, G., Bino, R., Goodenowe, D.B. (2002) Nontargeted Meta-bolome Analysis by Use of Fourier Transform Ion Cyclotron Mass Spectrometry. Omics 6, 217–234.

    Article  PubMed  CAS  Google Scholar 

  5. Parker, D., Beckmann, M., Enot, D.P., Overy, D.P., Caracuel Rios, Z., Gilbert, M., Talbot, N., Draper, D. (2008) Rice blast infection of Brachypodium distachyon as a model system to study dynamic host pathogen interactions. Naure. Prot. 3, 435–445.

    Article  CAS  Google Scholar 

  6. Allwood, J.W., Ellis, D.I., Heald, J.K., Goodacre, R., Mur, L.A.J. (2006) Metabolomic approaches reveal that phosphatidic and phosphatidyl glycerol phospholipids are major discriminatory non-polar metabolites in responses by Brachypodium distachyon to challenge by Magnaporthe grisea. The Plant J 46, 351–368.

    Article  CAS  Google Scholar 

  7. Koulman, A., Woffendin, G., Narayana, V.K., Welchman, H., Crone, C., Volmer, D.A. (2009) High-resolution extracted ion chromatography, a new tool for metabolomics and lipidomics using a second-generation orbitrap mass spectrometer. Rapid Communications in Mass Spectr. 23, 1411 – 1418.

    Article  CAS  Google Scholar 

  8. Hirai, M.Y., Yano, M., Goodenowe, D.B., Kanaya, S., Kimura, T., Awazuhara, M., Arita, M., Fujiwara, T., Saito, K. (2004) Integration of transcriptomics and metabolomics for understanding of global responses to nutritional stresses in Arabidopsis thaliana. PNAS USA 101, 10205–10210.

    Article  PubMed  CAS  Google Scholar 

  9. Nakamura, Y., Kimura, A., Saga, H., Oikawa, A., Shinbo, Y., Kai, K., Sakurai, N., Suzuki, H., Kitayama, M., Shibata, D., Kanaya, S., Ohta, D. (2007) Differential metabolomics unravelling light/dark regulation of metabolic activities in Arabidopsis cell cultures. Planta 227, 57–66.

    Article  PubMed  CAS  Google Scholar 

  10. Ohta, D., Shibata, D., Kanaya, S. (2007) Metabolic profiling using Fourier-transform ion-cyclotron-resonance mass spectrometry. Anal. Bioanal. Chem. 389, 1469–1475.

    Article  PubMed  CAS  Google Scholar 

  11. Enot, D.P., Lin, W., Beckmann, M., Parker, D., Overy, D.P., Draper, J. (2008) Preprocessing, classification modelling and feature selection using flow injection electrospray mass spectrometry metabolite fingerprint data. Nature Prot. 3, 446–470.

    Article  CAS  Google Scholar 

  12. Draper, J., Enot, D.P., Parker, D., Beckmann, M., Snowdon, S., Lin, W., Zubair, H. (2009) Metabolite signal identification in accurate mass metabolomics data with MZedDB, an interactive m/z annotation tool utilising predicted ionisation behaviour ‘rules’. BMC Bioinformatics 10, 227.

    Article  PubMed  Google Scholar 

  13. Kind, T. and Fiehn, O. (2007) Seven Golden Rules for heuristic filtering of molecular formulas obtained by accurate mass spectrometry. BMC Bioinformatics 8, 105.

    Article  PubMed  Google Scholar 

  14. Enot, D.P., Beckmann, M., Draper, J. (2007) Detecting a difference – assessing generalisability when modelling metabolome fingerprint data in longer term studies of genetically modified plants. Metabolomics 3, 335–347.

    Article  Google Scholar 

  15. Jolliffe (1986) Principle Components Analysis. Springer-Verlag, New York.

    Google Scholar 

  16. Goodacre, R. (2007) Metabolomics of a superorganism. J. Nutrition 137, 259 S–266 S.

    CAS  Google Scholar 

  17. Goodacre, R. Vaidyanathan, S., Dunn, W.B., Harrigan, G.G., Kell, D.B. (2004) Metabolomics by numbers – acquiring and understanding global metabolite data. Trends Biotech. 22, 245–252.

    Article  CAS  Google Scholar 

  18. Enot, D.P., Beckmann, M., Overy, D., Draper, J. (2006) Predicting interpretability of metabolome models based on behavior, putative identity, and biological relevance of explanatory signals. PNAS USA 103 14865–14870.

    Article  PubMed  CAS  Google Scholar 

  19. Enot, D.P. and Draper, J. (2007) Statistical measures for validating plant genotype similarity assessments following multivariate analysis of metabolome fingerprint data. Metabolomics 3, 349–355.

    Article  CAS  Google Scholar 

  20. Goodacre, R., York, E.V., Heald, J.K., Scott, I.M. (2003) Chemometric discrimination of unfractionated plant extracts profiled by flow-injection electrospray mass spectrometry. Phytochem. 62, 859–863.

    Article  CAS  Google Scholar 

  21. Johnson, H.E., Broadhurst, D., Goodacre, R., Smith, A.R. (2003) Metabolic fingerprinting in salt-stressed tomatoes. Phytochem. 62, 919–928.

    Article  CAS  Google Scholar 

  22. Brown, M., Dunn, W.B., Dobson, P., Patel, Y., Winder, C.L., Francis-McIntyre, S., Begley, P., Carroll, K., Broadhurst, D., Tseng, A., Swainston, N., Spasic, I., Goodacre, R., Kell, D.B. (2009) Mass spectrometry tools and metabolite-specific databases for molecular identification in metabolomics. The Analyst 134, 1322–1332.

    Article  PubMed  CAS  Google Scholar 

  23. Overy, D.P., Enot, D.P., Tailliart, K., Jenkins, H., Parker, D., Beckmann, M., Draper, J. (2008) Explanatory signal interpretation and metabolite identification strategies for nominal mass FIE-MS metabolite fingerprints. Nature Prot. 3, 471–485.

    Article  CAS  Google Scholar 

  24. Laskin, J. and Futrell, J.H. (2005) Activation of large ions in FT-ICR mass spectrometry. Mass Spec. Rev. 24, 135–167.

    Article  CAS  Google Scholar 

  25. Beckmann, M., Parker, D., Enot, D.P., Duval, E., Draper, J. (2008) High-throughput metabolome fingerprinting using Flow Injection Electrospray Mass Spectrometry. Nature Prot. 3, 486–504.

    Article  CAS  Google Scholar 

  26. Fiehn, O., Kopka, J., Dormann, P., Altmann, T., Trethewey, R.N., Willmitzer, L. (2000) Metabolite profiling for plant functional genomics. Nat. Biotechnol. 18, 1157–1161.

    Article  PubMed  CAS  Google Scholar 

  27. Lisec, J., Schauer, N., Kopka, J., Willmitzer, L., Fernie, A.R. (2006) Gas chromatography mass spectrometry-based metabolite profiling in plants. Nature Prot. 1, 387–396.

    Article  CAS  Google Scholar 

  28. Biais, B. and Allwood, J.W., Deborde, C., Xu, Y., Maucourt, M., Beauvoit, B., Dunn, W.B., Jacob, D., Goodacre, R., Rolin, D., Moing, A. (2009) 1H-NMR, GC-EI-TOF-MS, and data set correlation for fruit metabolomics, application to melon. Anal. Chem. 81, 28842894.

    Article  PubMed  CAS  Google Scholar 

  29. Allwood, J.W. and Erban, A., de Koning, S., Dunn, W.B., Luedemann, A., Lommen, A., Kay, L., Löscher, R., Kopka, J., Goodacre, R. (2009) Inter-laboratory reproducibility of fast gas chromatography – electron impact – time of flight mass spectrometry (GC-EI-TOFMS) based plant metabolomics. Metabolomics 5, 479–496.

    Article  PubMed  CAS  Google Scholar 

  30. Broadhurst, D.I. and Kell, D.B. (2006) Statistical strategies for avoiding false discoveries in metabolomics and related experiments. Metabolomics 2, 171–196.

    Article  CAS  Google Scholar 

  31. Taylor, N.S., Weber, R.J.M., Southam, A.D., Payne, T.G., Hrydziuszko, O., Arvanitis, T.N., Viant, M.R. (2009) A new approach to toxicity testing in Daphnia magna: application of high throughput FT-ICR mass spectrometry metabolomics. Metabolomics 5, 44–58.

    Article  CAS  Google Scholar 

  32. Southam, A.D., Payne, T.G., Cooper, H.J., Arvanitis, T.N., Viant, M.R. (2007) Dynamic Range and Mass Accuracy of Wide-Scan Direct Infusion Nanoelectrospray Fourier Transform Ion Cyclotron Resonance Mass Spectrometry-Based Metabolomics Increased by the Spectral Stitching Method. Anal. Chem. 79, 45954602.

    Article  PubMed  CAS  Google Scholar 

  33. Payne, T.G., Southam, A.D., Arvanitis, T.N., Viant, M.R. (2009) A Signal Filtering Method for Improved Quantification and Noise Discri-mination in Fourier Transform Ion Cyclotron Resonance Mass Spectrometry-Based Metabo-lomics Data. JASMS 20 1087–1095.

    CAS  Google Scholar 

  34. Beckmann, M., Enot, D.P., Overy, D.P., Draper, J. (2007) Representation, comparison, and interpretation of metabolome fingerprint data for total composition analysis and quality trait investigation in potato cultivars. J. Ag. Food Chem. 55, 3444–3451.

    Article  CAS  Google Scholar 

  35. Breitling, R., Pitt, A.R., Barrett, M.P. (2006) Precision mapping of the metabolome. Trends Biotech. 24, 543548.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

JWA and RG would like to acknowledge the EU Frame work VI initiative for research funding and support as part of the plant metabolomics project META-PHOR (FOOD-CT-2006-036220). RG is also grateful to the UK BBSRC for financial support of the MCISB (Manchester Centre for Integrative Systems Biology). DP, JD, and MB would like to acknowledge research support received from Aberystwyth University and UK BBSRC grant BB/D006953/1; MB is further supported by a Research Councils UK Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. William Allwood .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Allwood, J.W., Parker, D., Beckmann, M., Draper, J., Goodacre, R. (2011). Fourier Transform Ion Cyclotron Resonance Mass Spectrometry for Plant Metabolite Profiling and Metabolite Identification. In: Hardy, N., Hall, R. (eds) Plant Metabolomics. Methods in Molecular Biology, vol 860. Humana Press. https://doi.org/10.1007/978-1-61779-594-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-594-7_11

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-593-0

  • Online ISBN: 978-1-61779-594-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics