Skip to main content

Broad-Host-Range Plasmid Vectors for Gene Expression in Bacteria

  • Protocol
  • First Online:
Strain Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 765))

Abstract

This chapter provides methods and insights into the use of broad-host-range plasmid vectors useful for expression of genes in a variety of bacteria. The main focus is on IncQ, IncW, IncP, and pBBR1-based plasmids which have all been used for such applications. The specific design of each vector is adapted to its use, and here we describe, as an example, a protocol for construction (in Escherichia coli) of large insert DNA libraries in an IncP type vector and transfer of the library to the desired host. The genes of interest will in this case have to be expressed from their own promoters and the libraries will be screened by a method that best fits the functions of the gene or gene clusters searched for.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Primrose S. B. and Twyman R. M. (2006) ‘Basic biology of plasmid and phage vectors’, Principles of gene manipulation (7th edn: Blackwell), 55–74.

    Google Scholar 

  2. del Solar G. and Espinosa M. (2000) Plasmid copy number control: an ever-growing story. Mol. Microbiol. 37, 492–500.

    Article  PubMed  Google Scholar 

  3. Datta N. (1979) ‘Plasmid classification: incompatibility grouping’, in K. Timmis and A. Puhler (eds.), Plasmids of Medical, Environmental and Commercial Importance (Amsterdam: Elsevier/North Holland), 3–12.

    Google Scholar 

  4. Novick R. P. (1987) Plasmid incompatibility. Microbiol. Rev. 51, 381–95.

    PubMed  CAS  Google Scholar 

  5. Imanaka T. and Aiba S. (1981) A perspective on the application of genetic engineering: stability of recombinant plasmid. Ann. N.Y. Acad. Sci. 369, 1–14.

    Google Scholar 

  6. Aune T. E. V. and Aachmann F. L. (2010) Methodologies to increase the transformation efficiencies and the range of bacteria that can be transformed. Appl. Microbiol. Biotechnol. 85, 1301–13.

    Article  PubMed  CAS  Google Scholar 

  7. Figurski D. H. and Helinski D. R. (1979) Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc. Natl. Acad. Sci. U. S. A. 76, 1648–52.

    Article  PubMed  CAS  Google Scholar 

  8. Haring V. and Scherzinger E. (1989) ‘Replication proteins of the IncQ plasmid RSF1010’, in C. M. Thomas (ed.), Promiscuous Plasmids of Gram-Negative Bacteria (Academic Press, London, United Kingdom.), 95–124.

    Google Scholar 

  9. Fernández-López R., et al. (2006) Dynamics of the IncW genetic backbone imply general trends in conjugative plasmid evolution. FEMS Microbiol. Rev. 30, 942–66.

    Article  PubMed  Google Scholar 

  10. Valentine C. R. I. and Kado C. I. (1989) ‘Moelcular Genetics of IncW plasmids’, in C. M. Thomas (ed.), Promiscuous Plasmids of Gram-Negative Bacteria (Academic Press, London, United Kingdom.), 125–63.

    Google Scholar 

  11. Lefebre M. D. and Valvano M. A. (2002) Construction and evaluation of plasmid vectors optimized for constitutive and regulated gene expression in Burkholderia cepacia complex isolates. Appl. Environ. Microbiol. 68, 5956–64.

    Article  PubMed  CAS  Google Scholar 

  12. Vedler E., Vahter M., and Heinaru A. (2004) The completely sequenced plasmid pEST4011 contains a novel IncP1 backbone and a catabolic transposon harboring tfd genes for 2,4-dichlorophenoxyacetic acid degradation. J. Bacteriol. 186, 7161–74.

    Article  PubMed  CAS  Google Scholar 

  13. Schluter A., Szczepanowski R., Puhler A., and Top E. M. (2007) Genomics of IncP-1 antibiotic resistance plasmids isolated from wastewater treatment plants provides evidence for a widely accessible drug resistance gene pool. FEMS Microbiol. Rev. 31, 449–77.

    Article  PubMed  Google Scholar 

  14. Thomas C. M. and Helinski D. R. (1989) ‘Vegetative replication and stable inheritance of IncP plasmids’, in C. M. Thomas (ed.), Promiscuous Plasmids of Gram-Negative Bacteria (Academic Press, London, United Kingdom.), 1–25.

    Google Scholar 

  15. Bates S., Cashmore A. M., and Wilkins B. M. (1998) IncP plasmids are unusually effective in mediating conjugation of Escherichia coli and Saccharomyces cerevisiae: involvement of the tra2 mating system. J. Bacteriol. 180, 6538–43.

    PubMed  CAS  Google Scholar 

  16. Poyart C. and Trieu-Cuot P. (1997) A broad-host-range mobilizable shuttle vector for the construction of transcriptional fusions to beta-galactosidase in gram-positive bacteria. FEMS Microbiol. Lett. 156, 193–98.

    Article  PubMed  CAS  Google Scholar 

  17. Waters V. L. (2001) Conjugation between bacterial and mammalian cells. Nat. Genet. 29, 375–76.

    Article  PubMed  CAS  Google Scholar 

  18. Burkardt H. J., Riess G., and Puhler A. (1979) Relationship of group P1 plasmids revealed by heteroduplex experiments: RP1, RP4, R68 and RK2 are identical. J. Gen. Microbiol. 114, 341–8.

    PubMed  CAS  Google Scholar 

  19. Currier T. C. and Morgan M. K. (1981), Restriction endonuclease analyses of the incompatibility group P-1 plasmids RK2, RP1, RP4, R68, and R68.45. Curr. Microbiol. 5, 323–27.

    Article  CAS  Google Scholar 

  20. Aakvik T., et al. (2009) A plasmid RK2-based broad-host-range cloning vector useful for transfer of metagenomic libraries to a variety of bacterial species. FEMS Microbiol. Lett. 296, 149–58.

    Article  PubMed  CAS  Google Scholar 

  21. Blatny J. M., Brautaset T., Winther-Larsen H. C., Karunakaran P., and Valla S. (1997) Improved broad-host-range RK2 vectors useful for high and low regulated gene expression levels in gram-negative bacteria. Plasmid 38, 35–51.

    Article  PubMed  CAS  Google Scholar 

  22. Sia E. A., Roberts R. C., Easter C., Helinski D. R., and Figurski D. H. (1995) Different relative importances of the par operons and the effect of conjugal transfer on the maintenance of intact promiscuous plasmid RK2. J. Bacteriol. 177, 2789–97.

    PubMed  CAS  Google Scholar 

  23. Liles M. R., et al. (2009) Isolation and cloning of high-molecular-weight metagenomic DNA from soil microorganisms, Cold Spring Harb. Protoc. 2009, pdb.prot5271.

    Google Scholar 

  24. de Lorenzo V., Eltis L., Kessler B., and Timmis K. N. (1993) Analysis of Pseudomonas gene products using lacIq/Ptrp-lac plasmids and transposons that confer conditional phenotypes. Gene 123, 17–24.

    Article  PubMed  Google Scholar 

  25. Sambrook J. and Russel D. (2000) Molecular cloning: a laboratory manual (Cold Spring Harbor Laboratory Press, New York, N.Y.).

    Google Scholar 

  26. Bagdasarian M. M., Amann E., Lurz R., Rückert B., and Bagdasarian M. (1983) Activity of the hybrid trp-lac (tac) promoter of Escherichia coli in Pseudomonas putida. Construction of broad-host-range, controlled-expression vectors. Gene 26, 273–82.

    Article  PubMed  CAS  Google Scholar 

  27. Huang H. H., Camsund D., Lindblad P., and Heidorn T. (2010) Design and characterization of molecular tools for a Synthetic Biology approach towards developing cyanobacterial ­biotechnology. Nucleic Acids Res. 38, 2577–93.

    Article  PubMed  CAS  Google Scholar 

  28. Schofield D. A., et al. (2003) Development of a thermally regulated broad-spectrum promoter system for use in pathogenic gram-positive ­species. Appl. Environ. Microbiol. 69, 3385–92.

    Article  PubMed  CAS  Google Scholar 

  29. Smits T. H., Seeger M. A., Witholt B., and van Beilen J. B. (2001) New alkane-responsive expression vectors for Escherichia coli and Pseudomonas. Plasmid 46, 16–24.

    Article  PubMed  CAS  Google Scholar 

  30. Newman J. R. and Fuqua C. (1999) Broad-host-range expression vectors that carry the L-arabinose-inducible Escherichia coli araBAD promoter and the araC regulator. Gene 227, 197–203.

    Article  PubMed  CAS  Google Scholar 

  31. Prior J. E., Lynch M. D., and Gill R. T. (2010) Broad-host-range vectors for protein expression across gram negative hosts. Biotechnol. Bioeng. 106, 326–32.

    PubMed  CAS  Google Scholar 

  32. Sukchawalit R., Vattanaviboon P., Sallabhan R., and Mongkolsuk S. (1999). Construction and characterization of regulated L-arabinose-inducible broad host range expression vectors in Xanthomonas. FEMS Microbiol. Lett. 181, 217–23.

    PubMed  CAS  Google Scholar 

  33. Singer J. T., et al. (2010) Broad-host-range plasmids for red fluorescent protein labeling of gram-negative bacteria for use in the zebrafish model system. Appl. Environ. Microbiol. 76, 3467–74.

    Article  PubMed  CAS  Google Scholar 

  34. Katzke N., et al. (2010) A novel T7 RNA polymerase dependent expression system for high-level protein production in the phototrophic bacterium Rhodobacter capsulatus. Protein Expression Purif. 69, 137–46.

    Article  CAS  Google Scholar 

  35. Jeske M. and Altenbuchner J. (2010) The Escherichia coli rhamnose promoter rhaP(BAD) is in Pseudomonas putida KT2440 independent of Crp-cAMP activation. Appl. Microbiol. Biotechnol. 85, 1923–33.

    Article  PubMed  CAS  Google Scholar 

  36. Keil S. and Keil H. (1992) Construction of a cassette enabling regulated gene expression in the presence of aromatic hydrocarbons. Plasmid 27, 191–99.

    Article  PubMed  CAS  Google Scholar 

  37. Mermod N., Ramos J. L., Lehrbach P. R., and Timmis K. N. (1986) Vector for regulated expression of cloned genes in a wide range of gram-negative bacteria. J. Bacteriol. 167, 447–54.

    PubMed  CAS  Google Scholar 

  38. Ramos J. L., Gonzäles-Carrero M., and Timmis K. N. (1988) Broad-host range expression vectors containing manipulated meta-cleavage pathway regulatory elements of the TOL plasmid. FEBS Lett. 226, 241.

    Article  PubMed  CAS  Google Scholar 

  39. Davison J., Heusterspreute M., Chevalier N., Ha-Thi V., and Brunel F. (1987) Vectors with restriction site banks. V. pJRD215, a wide-host-range cosmid vector with multiple cloning sites. Gene 51, 275–80.

    Article  PubMed  CAS  Google Scholar 

  40. Davison J. (2002) Genetic tools for pseudomonads, rhizobia, and other gram-­negative bacteria. BioTechniques 32, 386–8, 90, 92–4, passim.

    Google Scholar 

  41. Frey J. and Bagdasarian M. (1989) ‘The Moelcular Biology of IncQ plasmids’, in C. M. Thomas (ed.), Promiscuous Plasmids of Gram-Negative Bacteria (Academic Press, London, United Kingdom.), 79–94.

    Google Scholar 

  42. Labes M., Pühler A., and Simon R. (1990) A new family of RSF1010-derived expression and lac-fusion broad-host-range vectors for gram-negative bacteria. Gene 89, 37–46.

    Article  PubMed  CAS  Google Scholar 

  43. Leemans J., et al. (1982) Broad-host-range cloning vectors derived from the W-plasmid Sa. Gene 19, 361–64.

    Article  PubMed  CAS  Google Scholar 

  44. Antoine R. and Locht C. (1992) Isolation and molecular characterization of a novel broad-host-range plasmid from Bordetella bronchiseptica with sequence similarities to plasmids from gram-positive organisms. Mol. Microbiol. 6, 1785–99.

    Article  PubMed  CAS  Google Scholar 

  45. Kovach M. E., et al. (1995) Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166, 175–76.

    Article  PubMed  CAS  Google Scholar 

  46. Wild J., Hradecna Z., and Szybalski W. (2002) Conditionally amplifiable BACs: switching from single-copy to high-copy ­vectors and genomic clones. Genome Res. 12, 1434–44.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Svein Valla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Lale, R., Brautaset, T., Valla, S. (2011). Broad-Host-Range Plasmid Vectors for Gene Expression in Bacteria. In: Williams, J. (eds) Strain Engineering. Methods in Molecular Biology, vol 765. Humana Press. https://doi.org/10.1007/978-1-61779-197-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-197-0_19

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-196-3

  • Online ISBN: 978-1-61779-197-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics