Skip to main content

Assessment of the Contribution of the Plasma Membrane Calcium ATPase, PMCA, Calcium Transporter to Synapse Function Using Patch Clamp Electrophysiology and Fast Calcium Imaging

  • Protocol
  • First Online:
Membrane Transporters in Drug Discovery and Development

Part of the book series: Methods in Molecular Biology ((MIMB,volume 637))

Abstract

The plasma membrane calcium ATPase, or PMCA, functions to extrude calcium out of cells as a key component necessary for adequate calcium homeostasis in all cells. However, calcium is particularly important at synapses between neurons, where communication relies on the controlled rise and fall in presynaptic calcium that precedes the release of neurotransmitter. Here we show how to infer the real-time contribution of PMCA-mediated calcium extrusion to this presynaptic calcium dynamic and how this influences the properties of the synapse. To do this we have taken advantage of a well-studied synapse in the cerebellum. We use electrophysiology to assess the timing of short-term facilitation at this synapse in the presence and absence of PMCA2 using PMCA2 knockout mice and pharmacology and fast calcium imaging to measure the presynaptic calcium dynamics. These approaches are all highly applicable to other synapses and can help determine the contribution of PMCA, and other transporters or exchangers, to the calcium dynamics that underpin reliable synaptic transmission.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Strehler, E.E. and Zacharias, D.A. (2001) Role of alternative splicing in generating isoform diversity among plasma membrane calcium pumps. Physiol. Rev. 81, 21–50.

    CAS  PubMed  Google Scholar 

  2. Berridge, M.J., Bootman, M.D., and Roderick, H.L. (2003) Calcium signalling: dynamics, homeostasis and remodelling. Nat. Rev. Mol. Cell Biol. 4, 517–529.

    Article  CAS  PubMed  Google Scholar 

  3. Strehler, E.E., Heim, R., and Carafoli, E. (1991) Molecular characterization of plasma membrane calcium pump isoforms. Adv. Exp. Med. Biol. 307, 251–261.

    CAS  PubMed  Google Scholar 

  4. Caride, A.J., Penheiter, A.R., Filoteo, A.G., Bajzer, Z., Enyedi, A., Penniston, J.T. (2001) The plasma membrane calcium pump displays memory of past calcium spikes. Differences between isoforms 2b and 4b. J. Biol. Chem. 276, 39797–39804.

    Article  CAS  PubMed  Google Scholar 

  5. Wanaverbecq, N., Marsh, S.J., Al-Qatari, M., and Brown, D.A. (2003) The plasma membrane calcium-ATPase as a major mechanism for intracellular calcium regulation in neurons from the rat superior cervical ganglion. J. Physiol. 550, 83–101.

    Article  CAS  PubMed  Google Scholar 

  6. Thomas, R.C. (2008) The plasma membrane calcium ATPase (PMCA) of neurons is electroneutral and exchanges 2 H+ for each Ca2+ or Ba2+ ion extruded. J. Physiol. 587(2) 315–327.

    Google Scholar 

  7. Kreitzer, M.A., Collis, L.P., Molina, A.J., Smith, P.J., and Malchow, R.P. (2007) Modulation of extracellular proton fluxes from retinal horizontal cells of the catfish by depolarization and glutamate. J. Gen. Physiol. 130, 169–82.

    Google Scholar 

  8. Kim, M.H., Korogod, N., Schneggenburger, R., Ho, W.K., and Lee, S.H. (2005) Interplay between Na+/Ca2+ exchangers and mitochondria in Ca2+ clearance at the calyx of Held. J. Neurosci. 25, 6057–6065.

    Article  CAS  PubMed  Google Scholar 

  9. Lnenicka, G.A., Grizzaffi, J., Lee, B., and Rumpal, N. (2006) Ca2+ dynamics along identified synaptic terminals in Drosophila larvae. J. Neurosci. 26, 12283–12293.

    Article  CAS  PubMed  Google Scholar 

  10. Jensen, T.P., Filoteo, A.G., Knopfel, T., and Empson, R.M. (2007) Pre synaptic plasma membrane Ca2+ ATPase isoform 2a regulates excitatory synaptic transmission in rat hippocampal CA3. J. Physiol. 579, 85–99.

    Article  CAS  PubMed  Google Scholar 

  11. Empson, R.M., Garside, M.L., and Knopfel, T. (2007) Plasma membrane Ca2+ ATPase 2 contributes to short-term synapse plasticity at the parallel fiber to Purkinje neuron synapse. J. Neurosci. 27, 3753–3758.

    Article  CAS  PubMed  Google Scholar 

  12. Ficarella, R., Di Leva, F., Bortolozzi, M., Ortolano, S., Donaudy, F., Petrillo, M., Melchionda, S., Lelli, A., Domi, T., Fedrizzi, L., Lim, D., Shull, G.E., Gasparini, P., Brini, M., Mammano, F., and Carafoli, E. (2007) A functional study of plasma-membrane calcium-pump isoform 2 mutants causing digenic deafness. Proc. Natl. Acad. Sci. USA. 104, 1516–1521.

    Article  CAS  PubMed  Google Scholar 

  13. Lou, X., Scheuss, V., and Schneggenburger, R. (2005) Allosteric modulation of the presynaptic Ca2+ sensor for vesicle fusion. Nature. 435, 497–501.

    Article  CAS  PubMed  Google Scholar 

  14. Sabatini, B.L. and Regehr, W.G.(1997) Control of neurotransmitter release by presynaptic waveform at the granule cell to Purkinje cell synapse. J. Neurosci. 17, 3425–3435.

    CAS  PubMed  Google Scholar 

  15. Katz, B. and Miledi, R.(1968) The role of calcium in neuromuscular facilitation. J. Physiol. 195, 481–492.

    CAS  PubMed  Google Scholar 

  16. Chen, C. and Regehr, W.G. (1999) Contributions of residual calcium to fast synaptic transmission. J. Neurosci. 19, 6257–6266.

    CAS  PubMed  Google Scholar 

  17. Burette, A. and Weinberg, R.J. (2007) Perisynaptic organization of plasma membrane calcium pumps in cerebellar cortex. J. Comp. Neurol. 500, 1127–1135.

    Article  CAS  PubMed  Google Scholar 

  18. Kozel, P.J., Friedman, R.A., Erway, L.C., et al. (1998) Balance and hearing deficits in mice with a null mutation in the gene encoding plasma membrane Ca2+-ATPase isoform 2. J. Biol. Chem. 273, 18693–18696.

    Article  CAS  PubMed  Google Scholar 

  19. Kurnellas, M.P., Lee, A.K., Li, H., Deng, L., Ehrlich, D.J., and Elkabes, S. (2007) Molecular alterations in the cerebellum of the plasma membrane calcium ATPase 2 (PMCA2)-null mouse indicate abnormalities in Purkinje neurons. Mol. Cell Neurosci. 34, 178–188.

    Article  CAS  PubMed  Google Scholar 

  20. Choi, H.S. and Eisner, D.A. (1999) The role of sarcolemmal Ca2+-ATPase in the regulation of resting calcium concentration in rat ventricular myocytes. J. Physiol. 515, 109–118.

    Article  CAS  PubMed  Google Scholar 

  21. Gatto, C. and Milanick, M. A. (1993). Inhibition of the red blood cell calcium pump by eosin and other fluorescein analogues. Am. J. Physiol. 264, C1577–C1586.

    CAS  PubMed  Google Scholar 

  22. Herscher, C.J. and Rega, A.F. (1996) Pre-steady-state kinetic study of the mechanism of inhibition of the plasma membrane Ca(2+)-ATPase by lanthanum. Biochemistry 35, 14917–14922.

    Article  CAS  PubMed  Google Scholar 

  23. Vale-González, C., Alfonso, A., Suñol, C., Vieytes, M.R., and Botana, L.M. (2006) Role of the plasma membrane calcium adenosine triphosphatase on domoate-induced intracellular acidification in primary cultures of cerebellar granule cells. J. Neurosci. Res. 84, 326–337.

    Article  PubMed  Google Scholar 

  24. Willoughby, D., Thomas, R., and Schwiening, C. (2001). The effects of intracellular pH changes on resting cytosolic calcium in voltage-clamped snail neurons. J. Physiol. 530, 405–416.

    Article  CAS  PubMed  Google Scholar 

  25. Benham, C.D., Evans, M.L., and McBain, C.J. (1992). Ca2+ efflux mechanisms following depolarisation evoked calcium transients in cultured rat sensory neurons. J. Physiol. 455, 567–583.

    CAS  PubMed  Google Scholar 

  26. Taira, T., Smirnov, S., Voipio, J., and Kaila, K. (1993). Intrinsic proton modulation of excitatory transmission in rat hippocampal slices. Neuroreport 4, 93–96.

    Article  CAS  PubMed  Google Scholar 

  27. Scheuss, V., Yasuda, R., Sobczyk, A., and Svoboda, K. (2006) Nonlinear [Ca2+] signaling in dendrites and spines caused by activity-dependent depression of Ca2+ extrusion. J. Neurosci. 26, 8183–8194.

    Article  CAS  PubMed  Google Scholar 

  28. Szewczyk, M.M., Pande, J., and Grover, A.K. (2008) Caloxins: a novel class of selective plasma membrane Ca2+ pump inhibitors obtained using biotechnology. Pflugers Arch. 456, 255–266.

    Article  CAS  PubMed  Google Scholar 

  29. Pande, J., Mallhi, K.K., and Grover, A.K. (2005) Role of third extracellular domain of plasma membrane Ca2+-Mg2+-ATPase based on the novel inhibitor caloxin 3A1. Cell Calcium. 37, 245–250.

    Article  CAS  PubMed  Google Scholar 

  30. Pande, J., Mallhi, K.K., Sawh, A., Szewczyk, M.M., Simpson, F., and Grover, A.K. (2006) Aortic smooth muscle and endothelial plasma membrane Ca2+ pump isoforms are inhibited differently by the extracellular inhibitor caloxin 1b1. Am. J. Physiol. Cell Physiol. 290, C1341–C1349.

    Article  CAS  PubMed  Google Scholar 

  31. Ito, M. (2006) Cerebellar circuitry as a neuronal machine. Prog. Neurobiol. 78, 272–303.

    Article  PubMed  Google Scholar 

  32. Hashimoto, K. and Kano, M. (1998) Presynaptic origin of paired-pulse depression at climbing fibre-Purkinje cell synapses in the rat cerebellum. J. Physiol. 506, 391–405.

    Article  CAS  PubMed  Google Scholar 

  33. Jeon, D., Yang, Y.M., Jeong, M.J., Philipson, K.D., Rhim, H., and Shin, H.S. (2003) Enhanced learning and memory in mice lacking Na+/Ca2+ exchanger 2. Neuron. 38, 965–976.

    Article  CAS  PubMed  Google Scholar 

  34. Canitano, A., Papa, M., Boscia, F., Castaldo, P., Sellitti, S., Taglialatela, M., and Annunziato, L. (2002) Brain distribution of the Na+/Ca2+ exchanger-encoding genes NCX1, NCX2, and NCX3 and their related proteins in the central nervous system. Ann. NY. Acad. Sci. 976, 394–404.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge the support of a University of Otago Research Grant, The Neurological Foundation of New Zealand (to RME), and a University of Otago PhD Scholarship to CJR.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Roome, C.J., Empson, R.M. (2010). Assessment of the Contribution of the Plasma Membrane Calcium ATPase, PMCA, Calcium Transporter to Synapse Function Using Patch Clamp Electrophysiology and Fast Calcium Imaging. In: Yan, Q. (eds) Membrane Transporters in Drug Discovery and Development. Methods in Molecular Biology, vol 637. Humana Press. https://doi.org/10.1007/978-1-60761-700-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-700-6_19

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-699-3

  • Online ISBN: 978-1-60761-700-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics