Skip to main content

Convection-Enhanced Drug Delivery to the Brain

  • Protocol
  • First Online:
Drug Delivery to the Central Nervous System

Part of the book series: Neuromethods ((NM,volume 45))

Abstract

Convection-enhanced delivery (CED) is a method of direct intracerebral parenchymal infusion. It has been previously studied as a mechanism of drug delivery in glioma therapy, which is the focus of this review, and much work has gone into the utilization of this technique. CED can be modeled using several equations that describe the transport of fluid into porous tissue. More practically, variability in CED catheters has been studied and catheters are currently being designed to optimize drug delivery. While CED is a theoretically excellent way to bypass the blood–brain barrier (BBB), limitations of current approaches include excessive backflow along the catheter tract and leakage into subarachnoid and intraventricular spaces. Several drugs, including many recombinant cytotoxins, have been assessed for safety and efficacy in phase I and II clinical trials while many more are still in early preclinical stages. While drug development is important, we must also be able to assess the infusate’s volume of distribution to verify adequate coverage of the target area. This can be evaluated through a number of different MRI sequencing techniques, or by co-infusing gadolinium as a tracer in a variety of different formulations, or even via software programs that can predict target distributions. This review summarizes the important advances that have been made to optimize the unique ability of CED to locally deliver high doses of powerful chemotherapeutics to gliomas for maximal tumor killing with minimal neurologic and systemic side effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Primary brain tumors in the United States statistical report. Central Brain Tumor Registry of the United States; 2007–2008.

    Google Scholar 

  2. Stupp, R., Mason, W. P., van den Bent, M. J. et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med (Mar 10), 352(10), 987–96.

    Article  CAS  PubMed  Google Scholar 

  3. Hegi, M. E., Diserens, A. C., Gorlia, T. et al (2005) MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med (Mar 10), 352(10), 997–1003.

    Article  CAS  PubMed  Google Scholar 

  4. Bobo, R. H., Laske, D. W., Akbasak, A., Morrison, P. F., Dedrick, R. L., and Oldfield, E. H. (1994) Convection-enhanced delivery of macromolecules in the brain. Proc Natl Acad Sci U S A (Mar 15), 91(6), 2076–80.

    Article  CAS  PubMed  Google Scholar 

  5. Vogelbaum, M. A. (2005) Convection enhanced delivery for the treatment of malignant gliomas: symposium review. J Neurooncol (May) 73(1), 57–69.

    Article  PubMed  Google Scholar 

  6. Bankiewicz, K. S., Eberling, J. L., Kohutnicka, M. et al (2000) Convection-enhanced delivery of AAV vector in parkinsonian monkeys; in vivo detection of gene expression and restoration of dopaminergic function using pro-drug approach. Exp Neurol (Jul) 164(1), 2–14.

    Article  CAS  PubMed  Google Scholar 

  7. Oiwa, Y., Sanchez-Pernaute, R., Harvey-White, J., and Bankiewicz, K. S. (2003) Progressive and extensive dopaminergic degeneration induced by convection-enhanced delivery of 6-hydroxydopamine into the rat striatum: a novel rodent model of Parkinson disease. J Neurosurg (Jan) 98(1), 136–44.

    Article  CAS  PubMed  Google Scholar 

  8. Zirzow, G. C., Sanchez, O. A., Murray, G. J., Brady, R. O., and Oldfield, E. H. (1999) Delivery, distribution, and neuronal uptake of exogenous mannose-terminal glucocerebrosidase in the intact rat brain. Neurochem Res (Feb) 24(2), 301–05.

    Article  CAS  PubMed  Google Scholar 

  9. Lonser, R. R., Walbridge, S., Murray, G. J. et al (2005) Convection perfusion of glucocerebrosidase for neuronopathic Gaucher’s disease. Ann Neurol (Apr) 57(4), 542–48.

    Article  CAS  PubMed  Google Scholar 

  10. Lonser, R. R., Schiffman, R., Robison, R. A. et al (2007) Image-guided, direct convective delivery of glucocerebrosidase for neuronopathic Gaucher disease. Neurology (Jan 23) 68(4), 254–61.

    Article  CAS  PubMed  Google Scholar 

  11. O’Connor, W. M., Davidson, B. L., Kaplitt, M. G. et al. (1997) Adenovirus vector-mediated gene transfer into human epileptogenic brain slices: prospects for gene therapy in epilepsy. Exp Neurol (Nov), 148(1), 167–78.

    Article  PubMed  Google Scholar 

  12. Fisher, R. S. and Ho, J. (2002) Potential new methods for antiepileptic drug delivery. CNS Drugs 16(9), 579–93.

    Article  CAS  PubMed  Google Scholar 

  13. Tenenbaum, L., Chtarto, A., Lehtonen, E., Velu, T., Brotchi, J., and Levivier, M. (2004) Recombinant AAV-mediated gene delivery to the central nervous system. J Gene Med (Feb) 6(Suppl 1), S212–S22.

    Article  CAS  PubMed  Google Scholar 

  14. Fisher, R. S. and Chen, D. K. (2006) New routes for delivery of anti-epileptic medications. Acta Neurol Taiwan (Dec) 15(4), 225–31.

    PubMed  Google Scholar 

  15. Vogelbaum, M. A. (2007) Convection enhanced delivery for treating brain tumors and selected neurological disorders: symposium review. J Neurooncol (May) 83(1), 97–109.

    Article  PubMed  Google Scholar 

  16. Hornung, U. (ed) (1997) Homogenization and Porous Media. Springer, New York.

    Google Scholar 

  17. Raghavan, R., Brady, M. L., Rodriguez-Ponce, M. I., Hartlep, A., Pedain, C., and Sampson, J. H. (2006) Convection-enhanced delivery of therapeutics for brain disease, and its optimization. Neurosurg Focus 20(4), E12.

    Article  PubMed  Google Scholar 

  18. Saito, R., Krauze, M. T., Noble, C. O. et al (2006) Tissue affinity of the infusate affects the distribution volume during convection-enhanced delivery into rodent brains: implications for local drug delivery. J Neurosci Meth (Jun 30) 154(1–2), 225–32.

    Article  CAS  Google Scholar 

  19. Guarnieri, M., Carson, B. S., Khan, A., Penno, M., and Jallo, G. I. (2005) Flexible versus rigid catheters for chronic administration of exogenous agents into central nervous system tissues. J Neurosci Meth (Jun 15) 144(2), 147–52.

    CAS  Google Scholar 

  20. Morrison, P. F., Chen, M. Y., Chadwick, R. S., Lonser, R. R., and Oldfield, E. H. (1999) Focal delivery during direct infusion to brain: role of flow rate, catheter diameter, and tissue mechanics. Am J Physiol (Oct) 277(4 Pt 2), R1218–R29.

    CAS  PubMed  Google Scholar 

  21. Chen, M. Y., Lonser, R. R., Morrison, P. F., Governale, L. S., and Oldfield, E. H. (1999) Variables affecting convection-enhanced delivery to the striatum: a systematic examination of rate of infusion, cannula size, infusate concentration, and tissue-cannula sealing time. J Neurosurg (Feb) 90(2), 315–20.

    Article  CAS  PubMed  Google Scholar 

  22. Morrison, P. F., Laske, D. W., Bobo, H., Oldfield, E. H., and Dedrick, R. L. (1994) High-flow microinfusion: tissue penetration and pharmacodynamics. Am J Physiol (Jan) 266(1 Pt 2), R292–R305.

    CAS  PubMed  Google Scholar 

  23. Krauze, M. T., Saito, R., Noble, C. et al (2005) Reflux-free cannula for convection-enhanced high-speed delivery of therapeutic agents. J Neurosurg (Nov) 103(5), 923–29.

    Article  PubMed  Google Scholar 

  24. Olson, J. J., Zhang, Z., Dillehay, D., and Stubbs, J. (2008) Assessment of a balloon-tipped catheter modified for intracerebral convection-enhanced delivery. J Neurooncol (Sep) 89(2), 159–68.

    Article  PubMed  Google Scholar 

  25. Barth, R. F., Soloway, A. H., and Fairchild, R. G. (1990) Boron neutron capture therapy of cancer. Cancer Res (Feb 15) 50(4), 1061–70.

    CAS  PubMed  Google Scholar 

  26. Yang, W., Barth, R. F., Adams, D. M. et al (2002) Convection-enhanced delivery of boronated epidermal growth factor for molecular targeting of EGF receptor-positive gliomas. Cancer Res (Nov 15) 62(22), 6552–58.

    CAS  PubMed  Google Scholar 

  27. Cunningham, J., Oiwa, Y., Nagy, D., Podsakoff, G., Colosi, P., and Bankiewicz, K. S. (2000) Distribution of AAV-TK following intracranial convection-enhanced delivery into rats. Cell Transplant (Sep–Oct) 9(5), 585–94.

    CAS  PubMed  Google Scholar 

  28. Saito, R., Krauze, M. T., Noble, C. O. et al (2006) Convection-enhanced delivery of Ls-TPT enables an effective, continuous, low-dose chemotherapy against malignant glioma xenograft model. Neuro Oncol (Jul) 8(3), 205–14.

    Article  CAS  PubMed  Google Scholar 

  29. Noble, C. O., Krauze, M. T., Drummond, D. C. et al (2006) Novel nanoliposomal CPT-11 infused by convection-enhanced delivery in intracranial tumors: pharmacology and efficacy. Cancer Res (Mar 1) 66(5), 2801–06.

    Article  CAS  PubMed  Google Scholar 

  30. Saito, R., Bringas, J. R., Panner, A. et al (2004) Convection-enhanced delivery of tumor necrosis factor-related apoptosis-inducing ligand with systemic administration of temozolomide prolongs survival in an intracranial glioblastoma xenograft model. Cancer Res (Oct 1) 64(19), 6858–62.

    Article  CAS  PubMed  Google Scholar 

  31. Degen, J. W., Walbridge, S., Vortmeyer, A. O., Oldfield, E. H., and Lonser, R. R. (2003) Safety and efficacy of convection-enhanced delivery of gemcitabine or carboplatin in a malignant glioma model in rats. J Neurosurg (Nov) 99(5), 893–98.

    Article  CAS  PubMed  Google Scholar 

  32. Lidar, Z., Mardor, Y., Jonas, T. et al (2004) Convection-enhanced delivery of paclitaxel for the treatment of recurrent malignant glioma: a phase I/II clinical study. J Neurosurg (Mar) 100(3), 472–79.

    Article  CAS  PubMed  Google Scholar 

  33. Jennings, M. T. and Pietenpol, J. A. (1998) The role of transforming growth factor beta in glioma progression. J Neurooncol (Jan) 36(2), 123–40.

    Article  CAS  PubMed  Google Scholar 

  34. Frankel, B., Longo, S. L., and Ryken, T. C. (1999) Human astrocytomas co-expressing Fas and Fas ligand also produce TGFbeta2 and Bcl-2. J Neurooncol 44(3), 205–12.

    Article  CAS  PubMed  Google Scholar 

  35. Kjellman, C., Olofsson, S. P., Hansson, O. et al (2000) Expression of TGF-beta isoforms, TGF-beta receptors, and SMAD molecules at different stages of human glioma. Int J Cancer (May 20) 89(3), 251–58.

    Article  CAS  PubMed  Google Scholar 

  36. Schlingensiepen, R., Goldbrunner, M., Szyrach, M. N. et al (2005) Intracerebral and intrathecal infusion of the TGF-beta 2-specific antisense phosphorothioate oligonucleotide AP 12009 in rabbits and primates: toxicology and safety. Oligonucleotides (Summer) 15(2), 94–104.

    Article  CAS  PubMed  Google Scholar 

  37. Hau, P., Jachimczak, P., Schlingensiepen, R. et al (2007) Inhibition of TGF-beta2 with AP 12009 in recurrent malignant gliomas: from preclinical to phase I/II studies. Oligonucleotides (Summer) 17(2), 201–12.

    Article  CAS  PubMed  Google Scholar 

  38. Patel, S. J., Shapiro, W. R., Laske, D. W. et al (2005) Safety and feasibility of convection-enhanced delivery of Cotara for the treatment of malignant glioma: initial experience in 51 patients. Neurosurgery (Jun) 56(6), 1243–52 (discussion 1252–1253).

    Article  PubMed  Google Scholar 

  39. Laske, D. W., Youle, R. J., and Oldfield, E. H. (1997) Tumor regression with regional distribution of the targeted toxin TF-CRM107 in patients with malignant brain tumors. Nat Med (Dec) 3(12), 1362–68.

    Article  CAS  PubMed  Google Scholar 

  40. Weaver, M. and Laske, D. W. (2003) Transferrin receptor ligand-targeted toxin conjugate (Tf-CRM107) for therapy of malignant gliomas. J Neurooncol (Oct) 65(1), 3–13.

    Article  PubMed  Google Scholar 

  41. Rand, R. W., Kreitman, R. J., Patronas, N., Varricchio, F., Pastan, I., and Puri, R. K. (2000) Intratumoral administration of recombinant circularly permuted interleukin-4-Pseudomonas exotoxin in patients with high-grade glioma. Clin Cancer Res (Jun) 6(6), 2157–65.

    CAS  PubMed  Google Scholar 

  42. Weber, F., Asher, A., Bucholz, R. et al (2003) Safety, tolerability, and tumor response of IL4-Pseudomonas exotoxin (NBI-3001) in patients with recurrent malignant glioma. J Neurooncol (Aug–Sep) 64(1–2), 125–37.

    PubMed  Google Scholar 

  43. Brem, H., Piantadosi, S., Burger, P. C. et al (1995) Placebo-controlled trial of safety and efficacy of intraoperative controlled delivery by biodegradable polymers of chemotherapy for recurrent gliomas. The Polymer-brain Tumor Treatment Group. Lancet (Apr 22) 345(8956), 1008–12.

    Article  CAS  PubMed  Google Scholar 

  44. Rainov, N. G. and Heidecke, V. (2004) Long term survival in a patient with recurrent malignant glioma treated with intratumoral infusion of an IL4-targeted toxin (NBI-3001). J Neurooncol (Jan) 66(1–2), 197–201.

    Article  CAS  PubMed  Google Scholar 

  45. Debinski, W., Obiri, N. I., Powers, S. K., Pastan, I., and Puri, R. K. (1995) Human glioma cells overexpress receptors for interleukin 13 and are extremely sensitive to a novel chimeric protein composed of interleukin 13 and pseudomonas exotoxin. Clin Cancer Res (Nov) 1(11), 1253–58.

    CAS  PubMed  Google Scholar 

  46. Debinski, W., Gibo, D. M., Hulet, S. W., Connor, J. R., and Gillespie, G. Y. (1999) Receptor for interleukin 13 is a marker and therapeutic target for human high-grade gliomas. Clin Cancer Res (May) 5(5), 985–90.

    CAS  PubMed  Google Scholar 

  47. Kunwar, S., Prados, M. D., Chang, S. M. et al (2007) Direct intracerebral delivery of cintredekin besudotox (IL13-PE38QQR) in recurrent malignant glioma: a report by the Cintredekin Besudotox Intraparenchymal Study Group. J Clin Oncol (Mar 1) 25(7), 837–44.

    Google Scholar 

  48. Vogelbaum, M. A., Sampson, J. H., Kunwar, S. et al (2007) Convection-enhanced delivery of cintredekin besudotox (interleukin-13-PE38QQR) followed by radiation therapy with and without temozolomide in newly diagnosed malignant gliomas: phase 1 study of final safety results. Neurosurgery (Nov) 61(5), 1031–37 (discussion 1037–1038).

    Article  PubMed  Google Scholar 

  49. Sawyer, A. J., Piepmeier, J. M., and Saltzman, W. M. (2006) New methods for direct delivery of chemotherapy for treating brain tumors. Yale J Biol Med (Dec) 79(3–4), 141–52.

    CAS  PubMed  Google Scholar 

  50. Wong, A. J., Bigner, S. H., Bigner, D. D., Kinzler, K. W., Hamilton, S. R., and Vogelstein, B. (1987) Increased expression of the epidermal growth factor receptor gene in malignant gliomas is invariably associated with gene amplification. Proc Natl Acad Sci U S A (Oct) 84(19), 6899–903.

    Article  CAS  PubMed  Google Scholar 

  51. Sampson, J. H., Reardon, D. A., Friedman, A. H. et al (2005) Sustained radiographic and clinical response in patient with bifrontal recurrent glioblastoma multiforme with intracerebral infusion of the recombinant targeted toxin TP-38: case study. Neuro Oncol (Jan) 7(1), 90–96.

    Article  PubMed  Google Scholar 

  52. Sampson, J. H., Akabani, G., Archer, G. E. et al (2008) Intracerebral infusion of an EGFR-targeted toxin in recurrent malignant brain tumors. Neuro Oncol (Jun) 10(3), 320–29.

    Article  CAS  PubMed  Google Scholar 

  53. Gregoriadis, G., Wills, E. J., Swain, C. P., and Tavill, A. S. (1974) Drug-carrier potential of liposomes in cancer chemotherapy. Lancet (Jun 29) 1(7870), 1313–16.

    Article  CAS  PubMed  Google Scholar 

  54. Harrington, K. J. (2001) Liposomal cancer chemotherapy: current clinical applications and future prospects. Expert Opin Investig Drugs (Jun) 10(6), 1045–61.

    Article  CAS  PubMed  Google Scholar 

  55. Maruyama, K. (2000) In vivo targeting by liposomes. Biol Pharm Bull (Jul) 23(7), 791–99.

    CAS  PubMed  Google Scholar 

  56. Voinea, M. and Simionescu, M. (2002) Designing of “intelligent” liposomes for efficient delivery of drugs. J Cell Mol Med (Oct–Dec) 6(4), 465–74.

    Article  CAS  PubMed  Google Scholar 

  57. Moog, R., Burger, A. M., Brandl, M. et al (2002) Change in pharmacokinetic and pharmacodynamic behavior of gemcitabine in human tumor xenografts upon entrapment in vesicular phospholipid gels. Cancer Chemother Pharmacol (May) 49(5), 356–66.

    Article  CAS  PubMed  Google Scholar 

  58. Zhu, J., Zhang, L., Hanisch, U. K., Felgner, P. L., and Reszka, R. (1996) A continuous intracerebral gene delivery system for in vivo liposome-mediated gene therapy. Gene Ther (Jun) 3(6), 472–76.

    CAS  PubMed  Google Scholar 

  59. von Eckardstein, K. L., Patt, S., Zhu, J., Zhang, L., Cervos-Navarro, J., and Reszka, R. (2001) Short-term neuropathological aspects of in vivo suicide gene transfer to the F98 rat glioblastoma using liposomal and viral vectors. Histol Histopathol (Jul) 16(3), 735–44.

    Google Scholar 

  60. Park, J. W., Hong, K., Kirpotin, D. B., Meyer, O., Papahadjopoulos, D., and Benz, C. C. (1997) Anti-HER2 immunoliposomes for targeted therapy of human tumors. Cancer Lett (Oct) 14 118(2), 153–60.

    Article  CAS  PubMed  Google Scholar 

  61. Park, J. W., Hong, K., Kirpotin, D. B., Papahadjopoulos, D., and Benz, C. C. (1997) Immunoliposomes for cancer treatment. Adv Pharmacol 40, 399–435.

    Article  CAS  PubMed  Google Scholar 

  62. Ram, Z., Culver, K. W., Oshiro, E. M. et al (1997) Therapy of malignant brain tumors by intratumoral implantation of retroviral vector-producing cells. Nat Med (Dec) 3(12), 1354–61.

    Article  CAS  PubMed  Google Scholar 

  63. Klatzmann, D., Valery, C. A., Bensimon, G. et al (1998) A phase I/II study of herpes simplex virus type 1 thymidine kinase “suicide” gene therapy for recurrent glioblastoma. Study Group on Gene Therapy for Glioblastoma. Hum Gene Ther (Nov 20) 9(17), 2595–604.

    Article  CAS  PubMed  Google Scholar 

  64. Shand, N., Weber, F., Mariani, L. et al (1999) A phase 1–2 clinical trial of gene therapy for recurrent glioblastoma multiforme by tumor transduction with the herpes simplex thymidine kinase gene followed by ganciclovir. GLI328 European-Canadian Study Group. Hum Gene Ther (Sep 20) 10(14), 2325–35.

    Article  CAS  PubMed  Google Scholar 

  65. Rainov, N. G. (2000) A phase III clinical evaluation of herpes simplex virus type 1 thymidine kinase and ganciclovir gene therapy as an adjuvant to surgical resection and radiation in adults with previously untreated glioblastoma multiforme. Hum Gene Ther (Nov 20) 11(17), 2389–401.

    Article  CAS  PubMed  Google Scholar 

  66. Voges, J., Reszka, R., Gossmann, A. et al (2003) Imaging-guided convection-enhanced delivery and gene therapy of glioblastoma. Ann Neurol (Oct) 54(4), 479–87.

    Article  CAS  PubMed  Google Scholar 

  67. Chenevert, T. L., McKeever, P. E., and Ross, B. D. (1997) Monitoring early response of experimental brain tumors to therapy using diffusion magnetic resonance imaging. Clin Cancer Res (Sep) 3(9), 1457–66.

    CAS  PubMed  Google Scholar 

  68. Chinnaiyan, A. M., Prasad, U., Shankar, S. et al (2000) Combined effect of tumor necrosis factor-related apoptosis-inducing ligand and ionizing radiation in breast cancer therapy. Proc Natl Acad Sci U S A (Feb 15) 97(4), 1754–59.

    Article  CAS  PubMed  Google Scholar 

  69. Gupta, R. K., Sinha, U., Cloughesy, T. F., and Alger, J. R. (1999) Inverse correlation between choline magnetic resonance spectroscopy signal intensity and the apparent diffusion coefficient in human glioma. Magn Reson Med (Jan) 41(1), 2–7.

    Article  CAS  PubMed  Google Scholar 

  70. Chenevert, T. L., Stegman, L. D., Taylor, J. M. et al (2000) Diffusion magnetic resonance imaging: an early surrogate marker of therapeutic efficacy in brain tumors. J Natl Cancer Inst (Dec 20) 92(24), 2029–2036.

    Article  CAS  PubMed  Google Scholar 

  71. Geschwind, J. F., Artemov, D., Abraham, S. et al (2000) Chemoembolization of liver tumor in a rabbit model: assessment of tumor cell death with diffusion-weighted MR imaging and histologic analysis. J Vasc Interv Radiol (Nov–Dec) 11(10), 1245–1255.

    Article  CAS  PubMed  Google Scholar 

  72. Pilatus, U., Shim, H., Artemov, D., Davis, D., van Zijl, P. C., and Glickson, J. D. (1997) Intracellular volume and apparent diffusion constants of perfused cancer cell cultures, as measured by NMR. Magn Reson Med (Jun) 37(6), 825–832.

    Article  CAS  PubMed  Google Scholar 

  73. Van Zijl, P. C., Moonen, C. T., Faustino, P., Pekar, J., Kaplan, O., and Cohen, J. S. (1991) Complete separation of intracellular and extracellular information in NMR spectra of perfused cells by diffusion-weighted spectroscopy. Proc Natl Acad Sci U S A (Apr 15) 88(8), 3228–3232.

    Article  PubMed  Google Scholar 

  74. Mardor, Y., Roth, Y., Lidar, Z. et al (2001) Monitoring response to convection-enhanced taxol delivery in brain tumor patients using diffusion-weighted magnetic resonance imaging. Cancer Res (Jul 1) 61(13), 4971–4973.

    CAS  PubMed  Google Scholar 

  75. Sampson, J. H., Raghavan, R., Provenzale, J. M. et al (2007) Induction of hyperintense signal on T2-weighted MR images correlates with infusion distribution from intracerebral convection-enhanced delivery of a tumor-targeted cytotoxin. AJR Am J Roentgenol (Mar) 188(3), 703–709.

    Article  PubMed  Google Scholar 

  76. Edelman, R. R., Mattle, H. P., Atkinson, D. J. et al (1990) Cerebral blood flow: assessment with dynamic contrast-enhanced T2*-weighted MR imaging at 1.5 T. Radiology (Jul) 176(1), 211–220.

    CAS  PubMed  Google Scholar 

  77. Rempp, K. A., Brix, G., Wenz, F., Becker, C. R., Guckel, F., and Lorenz, W. J. (1994) Quantification of regional cerebral blood flow and volume with dynamic susceptibility contrast-enhanced MR imaging. Radiology (Dec) 193(3), 637–641.

    CAS  PubMed  Google Scholar 

  78. Lonser, R. R., Warren, K. E., Butman, J. A. et al (2007) Real-time image-guided direct convective perfusion of intrinsic brainstem lesions. Technical note. J Neurosurg (Jul) 107(1), 190–197.

    Article  PubMed  Google Scholar 

  79. Mardor, Y., Rahav, O., Zauberman, Y. et al (2005) Convection-enhanced drug delivery: increased efficacy and magnetic resonance image monitoring. Cancer Res (Aug 1) 65(15), 6858–6863.

    Article  CAS  PubMed  Google Scholar 

  80. Murad, G. J., Walbridge, S., Morrison, P. F. et al (2007) Image-guided convection-enhanced delivery of gemcitabine to the brainstem. J Neurosurg (Feb) 106(2), 351–356.

    Article  CAS  PubMed  Google Scholar 

  81. Nguyen, T. T., Pannu, Y. S., Sung, C. et al (2003) Convective distribution of macromolecules in the primate brain demonstrated using computerized tomography and magnetic resonance imaging. J Neurosurg (Mar) 98(3), 584–590.

    Article  CAS  PubMed  Google Scholar 

  82. Wang, S. C., White, D. L., Pope, J. M., and Brasch, R. C. (1990) Magnetic resonance imaging contrast enhancement versus tissue gadolinium concentration. Invest Radiol (Sep) 25(Suppl 1), S44–45.

    CAS  PubMed  Google Scholar 

  83. Lonser, R. R., Walbridge, S., Garmestani, K. et al (2002) Successful and safe perfusion of the primate brainstem: in vivo magnetic resonance imaging of macromolecular distribution during infusion. J Neurosurg (Oct) 97(4), 905–913.

    Article  PubMed  Google Scholar 

  84. Sampson, J. H., Brady, M. L., Petry, N. A. et al (2007) Intracerebral infusate distribution by convection-enhanced delivery in humans with malignant gliomas: descriptive effects of target anatomy and catheter positioning. Neurosurgery (Feb) 60(2 Suppl 1) ONS89-98; discussion ONS98–89.

    Google Scholar 

  85. Saito, R., Bringas, J. R., McKnight, T. R. et al (2004) Distribution of liposomes into brain and rat brain tumor models by convection-enhanced delivery monitored with magnetic resonance imaging. Cancer Res (Apr 1) 64(7), 2572–2579.

    Article  CAS  PubMed  Google Scholar 

  86. Saito, R., Krauze, M. T., Bringas, J. R. et al (2005) Gadolinium-loaded liposomes allow for real-time magnetic resonance imaging of convection-enhanced delivery in the primate brain. Exp Neurol (Dec) 196(2), 381–389.

    Article  CAS  PubMed  Google Scholar 

  87. Murad, G. J., Walbridge, S., Morrison, P. F. et al (2006) Real-time, image-guided, convection-enhanced delivery of interleukin 13 bound to pseudomonas exotoxin. Clin Cancer Res (May 15) 12(10), 3145–3151.

    Article  CAS  PubMed  Google Scholar 

  88. Sampson, J. H., Raghavan, R., Brady, M. L. et al (2007) Clinical utility of a patient-specific algorithm for simulating intracerebral drug infusions. Neuro Oncol (Jul) 9(3), 343–353.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Ding, D., Kanaly, C.W., Brady, M.L., Mittermeyer, S., Raghavan, R., Sampson, J.H. (2010). Convection-Enhanced Drug Delivery to the Brain. In: Jain, K. (eds) Drug Delivery to the Central Nervous System. Neuromethods, vol 45. Humana Press. https://doi.org/10.1007/978-1-60761-529-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-529-3_15

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-528-6

  • Online ISBN: 978-1-60761-529-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics