Skip to main content

Construction and Hyperspectral Imaging of Quantum Dot Lysate Arrays

  • Protocol
  • First Online:
Molecular Profiling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 823))

Abstract

The emerging field of proteomic molecular profiling will be driven by new technologies that can measure dozens to hundreds of proteins from a small sample input from a patient’s biopsy. Lysate arrays, or reverse-phase protein microarrays, provide a platform for complex mixtures of proteins extracted from cells and tissues to be directly immobilized onto a solid support (such as a biochip with protein binding capacity) in diminutive volumes (picoliter-to-nanoliter). The proteins are spotted using precision robotics and then quantitatively assayed using primary antibodies; important posttranslational modifications, such as phosphorylations that are important for protein activation, may also be assayed to provide an estimate of the regulation of cellular signaling. Until recently, chromogenic signals and fluorescence (using organic fluorophores) detection were two strategies relied upon for signal detection. Emerging regents such as quantum dots (Qdot® nanocrystals; QD) are now employed for improved performance. QD embody a more versatile detection system because the robust signals may be time averaged and the narrow spectral emissions enable many protein targets to be quantified within the same lysate spot. Previously, we found that commercially available pegylated, streptavidin-conjugated QD were effective detection agents, with low-background affinities to spurious components within heterogeneous protein mixtures. Hyperspectral imaging allows the simultaneous detection of the different colored QD reagents within a single lysate spot. Here, we described the construction and imaging of QD lysate arrays. This technology is an emerging, enabling tool within the exciting, clinically oriented field of clinical tissue proteomics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Espina, V., Geho, D., Mehta, A. I., Petricoin, E. F., 3rd, Liotta, L. A., Rosenblatt, K. P. (2005) Pathology of the future: molecular profiling for targeted therapy. Cancer Invest 23, 36–46.

    PubMed  CAS  Google Scholar 

  2. Liotta, L. A., Kohn, E. C. (2001) The microenvironment of the tumour-host interface. Nature 411, 375–9.

    Article  PubMed  CAS  Google Scholar 

  3. Liotta, L. A., Espina, V., Mehta, A. I., Calvert, V., Rosenblatt, K., Geho, D. et al. (2003) Protein microarrays: meeting analytical challenges for clinical applications. Cancer Cell 3, 317–25.

    Article  PubMed  CAS  Google Scholar 

  4. Paweletz, C. P., Charboneau, L., Bichsel, V. E., Simone, N. L., Chen, T., Gillespie, J. W. et al. (2001) Reverse phase protein microarrays which capture disease progression show activation of pro-survival pathways at the cancer invasion front. Oncogene 20, 1981–9.

    Article  PubMed  CAS  Google Scholar 

  5. Haab, B. B. (2001) Advances in protein microarray technology for protein expression and interaction profiling. Curr Opin Drug Discov Devel 4, 116–23.

    PubMed  CAS  Google Scholar 

  6. Bobrow, M. N., Harris, T. D., Shaughnessy, K. J., Litt, G. J. (1989) Catalyzed reporter deposition, a novel method of signal amplification. Application to immunoassays. J Immunol Methods 125, 279–85.

    Article  CAS  Google Scholar 

  7. Bobrow, M. N., Litt, G. J., Shaughnessy, K. J., Mayer, P. C., Conlon, J. (1992) The use of catalyzed reporter deposition as a means of signal amplification in a variety of formats. J Immunol Methods 150, 145–9.

    Article  PubMed  CAS  Google Scholar 

  8. Sheehan, K. M., Calvert, V. S., Kay, E. W., Lu, Y., Fishman, D., Espina, V. et al. (2005) Use of reverse phase protein microarrays and reference standard development for molecular network analysis of metastatic ovarian carcinoma. Mol Cell Proteomics 4, 346–55.

    Article  PubMed  CAS  Google Scholar 

  9. Silvestri, A., Colombatti, A., Calvert, V. S., Deng, J., Mammano, E., Belluco, C. et al. (2010) Protein pathway biomarker analysis of human cancer reveals requirement for upfront cellular-enrichment processing. Lab Invest 90, 787–96.

    Article  PubMed  CAS  Google Scholar 

  10. Petricoin, E. F., 3rd, Espina, V., Araujo, R. P., Midura, B., Yeung, C., Wan, X. et al. (2007) Phosphoprotein pathway mapping: Akt/mammalian target of rapamycin activation is negatively associated with childhood rhabdomyosarcoma survival. Cancer Res  67, 3431–40.

    Article  PubMed  CAS  Google Scholar 

  11. Kornblau, S. M., Tibes, R., Qiu, Y., Chen, W., Kantarjian, H. M., Andreeff, M. et al. (2009) Functional proteomic profiling of AML predicts response and survival. Blood 113 (1);154–64.

    Google Scholar 

  12. Korf, U., Derdak, S., Tresch, A., Henjes, F., Schumacher, S., Schmidt, C. et al. (2008) Quantitative protein microarrays for time-resolved measurements of protein phosphorylation. Proteomics 8, 4603–12.

    Article  PubMed  CAS  Google Scholar 

  13. Geho, D., Lahar, N., Gurnani, P., Huebschman, M., Herrmann, P., Espina, V. et al. (2005) Pegylated, steptavidin-conjugated quantum dots are effective detection elements for reverse-phase protein microarrays. Bioconjug Chem 16, 559–66.

    Article  PubMed  CAS  Google Scholar 

  14. Michalet, X., Pinaud, F. F., Bentolila, L. A., Tsay, J. M., Doose, S., Li, J. J. et al. (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307, 538–44.

    Article  PubMed  CAS  Google Scholar 

  15. Pinaud, F., Michalet, X., Bentolila, L. A., Tsay, J. M., Doose, S., Li, J. J. et al. (2006) Advances in fluorescence imaging with quantum dot bio-probes. Biomaterials 27, 1679–87.

    Article  PubMed  CAS  Google Scholar 

  16. Bruchez, M., Jr., Moronne, M., Gin, P., Weiss, S., Alivisatos, A. P. (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281, 2013–6.

    Article  PubMed  CAS  Google Scholar 

  17. Chan, W. C., Nie, S. (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281, 2016–8.

    Article  PubMed  CAS  Google Scholar 

  18. Huebschman, M. L., Schultz, R. A., Garner, H. R. (2002) Characteristics and capabilities of the hyperspectral imaging microscope. IEEE Eng Med Biol Mag 21, 104–17.

    Article  PubMed  Google Scholar 

  19. Huebschman, M. L., Rosenblatt, K. P., Garner, H. R. (2009) Hyperspectral microscopy imaging to analyze pathology samples with multi-colors reduces time and cost. Proc. SPIE 7182 7182F doi:10.1117/12.809277.

  20. Katari, S., Wallack, M., Huebschman, M., Pantano, P., Garner, H. (2009) Fabrication and evaluation of a near-infrared hyperspectral imaging system. J Microsc 236, 11–7.

    Article  PubMed  CAS  Google Scholar 

  21. Schultz, R. A., Nielsen, T., Zavaleta, J. R., Ruch, R., Wyatt, R., Garner, H. R. (2001) Hyperspectral imaging: a novel approach for microscopic analysis. Cytometry 43, 239–47.

    Article  PubMed  CAS  Google Scholar 

  22. VanMeter, A. J., Rodriguez, A. S., Bowman, E. D., Jen, J., Harris, C. C., Deng, J. et al. (2008) Laser capture microdissection and protein microarray analysis of human non-small cell lung cancer: differential epidermal growth factor receptor (EGPR) phosphorylation events associated with mutated EGFR compared with wild type. Mol Cell Proteomics 7, 1902–24.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin P. Rosenblatt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Rosenblatt, K.P., Huebschman, M.L., Garner, H.R. (2012). Construction and Hyperspectral Imaging of Quantum Dot Lysate Arrays. In: Espina, V., Liotta, L. (eds) Molecular Profiling. Methods in Molecular Biology, vol 823. Humana Press. https://doi.org/10.1007/978-1-60327-216-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-216-2_20

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-215-5

  • Online ISBN: 978-1-60327-216-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics