Skip to main content

Functional Studies of DNA-Protein Interactions Using FRET Techniques

  • Protocol
  • First Online:
DNA-Protein Interactions

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 543))

Summary

Protein–DNA interactions underpin life and play key roles in all cellular processes and functions including DNA transcription, packaging, replication, and repair. Identifying and examining the nature of these interactions is therefore a crucial prerequisite to understand the molecular basis of how these fundamental processes take place. The application of fluorescence techniques and in particular fluorescence resonance energy transfer (FRET) to provide structural and kinetic information has experienced a stunning growth during the past decade. This has been mostly promoted by new advances in the preparation of dye-labeled nucleic acids and proteins and in optical sensitivity, where its implementation at the level of individual molecules has opened a new biophysical frontier. Nowadays, the application of FRET-based techniques to the analysis of protein–DNA interactions spans from the classical steady-state and time-resolved methods averaging over large ensembles to the analysis of distances, conformational changes, and enzymatic reactions in individual Protein–DNA complexes. This chapter introduces the practical aspects of applying these methods for the study of Protein–DNA interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hillisch, A., Lorenz, M., and Diekmann, S. (2001) Recent advances in FRET: distance determination in Protein–DNA complexes. Curr. Opinion Struct. Biol. 11, 201–207.

    Article  CAS  Google Scholar 

  2. Holbrook, S.R. (2005) RNA structure: the long and the short of it. Curr. Opinion Struct. Biol. 15, 302–308.

    Article  CAS  Google Scholar 

  3. Yan, Y., and Marriott, G. (2003) Analysis of protein interactions using fluorescence technologies. Curr. Opinion Chem. Biol. 7, 635–640.

    Article  CAS  Google Scholar 

  4. Michalet, X., Kapanidis, A.N., Laurence, T., Pinaud, F., Doose, S., Pflughoefft, M., and Weiss, S. (2003) The power and prospects of fluorescence microscopies and spectroscopies. Annu. Rev. Biophys. Biomol. Struct. 32, 161–82.

    Article  PubMed  CAS  Google Scholar 

  5. Lorenz, M., Hillisch, A., Payet, D., Buttinelli, M., Travers, A., and Diekmann, S. (1999) DNA bending induced by high mobility group proteins studied by fluorescence resonance energy transfer. Biochemistry 38, 12150–12158.

    Article  PubMed  CAS  Google Scholar 

  6. Selvin, P.R. (2000) The renaissance of fluorescence resonance energy transfer. Nat. Struct. Biol. 7, 730–734.

    Article  PubMed  CAS  Google Scholar 

  7. Stuhmeier, F., Hillisch, A., Clegg, R.M., and Diekman, S. (2000) Fluorescence energy transfer analysis of DNA structures containing several bulges and their interaction with CAP. J. Mol. Biol. 302, 1081–1100.

    Article  PubMed  CAS  Google Scholar 

  8. Clegg, R.M. (1992) Fluorescence resonance energy transfer and nucleic acids. Methods Enzymol. 211, 353–388.

    Article  PubMed  CAS  Google Scholar 

  9. Stryer, L., and Haugland, R.P. (1967) Energy transfer: a spectroscopic ruler. Proc. Natl Acad. Sci. USA 58, 719–726.

    Article  PubMed  CAS  Google Scholar 

  10. Stuhmeier, F., Hillisch, A., Clegg, R.M., and Diekman, S. (2000) Practical aspects of fluorescence resonance energy transfer (FRET) and its applications in nucleic acid biochemistry. DNA–Protein Interactions. Edited by Travers A., Buckle, M., Oxford: Oxford University Press, 77–94.

    Google Scholar 

  11. Bera, A., Roche, A. C., and Nandi, P. K. (2007) Bending and unwinding of nucleic acid by prion protein. Biochemistry 46, 1320–1328.

    Article  PubMed  CAS  Google Scholar 

  12. Lorenz, M., and Diekmann, S. (2006) Distance determination in Protein–DNA complexes using fluorescence resonance energy transfer. Methods Mol. Biol. 335, 243–255.

    PubMed  CAS  Google Scholar 

  13. Passner, J. M., and Steitz, T. A. (1997) The structure of a CAP–DNA complex having two cAMP molecules bound to each monomer. Proc. Natl Acad. Sci. USA 94, 2843–2847.

    Article  PubMed  CAS  Google Scholar 

  14. Hieb, A. R., Halsey, W. A., Betterton, M. D., Perkins, T. T., Kugel, J. F., and Goodrich, J. A. (2007) TFIIA changes the conformation of the DNA in TBP/TATA complexes and increases their kinetic stability. J. Mol. Biol. 372, 619–632.

    Article  PubMed  CAS  Google Scholar 

  15. Dragan, A. I., Klass, J., Read, C., Churchill, M. E., Crane-Robinson, C., and Privalov, P. L. (2003) DNA binding of a non-sequence-specific HMG-D protein is entropy driven with a substantial non-electrostatic contribution. J. Mol. Biol. 331, 795–813.

    Article  PubMed  CAS  Google Scholar 

  16. Kuznetsov, S. V., Sugimura, S., Vivas, P., Crothers, D. M., and Ansari, A. (2006) Direct observation of DNA bending/unbending kinetics in complex with DNA-bending protein IHF. Proc. Natl Acad. Sci. USA 103, 18515–18520.

    Article  PubMed  CAS  Google Scholar 

  17. Lorenz, M., Hillisch, A., Goodman, S. D., and Diekmann, S. (1999) Global structure similarities of intact and nicked DNA complexed with IHF measured in solution by fluorescence resonance energy transfer. Nucleic Acids Res. 27, 4619–4625.

    Article  PubMed  CAS  Google Scholar 

  18. Chapados, B. R., Hosfield, D. J., Han, S., Qiu, J., Yelent, B., Shen, B., and Tainer, J. A. (2004) Structural basis for FEN-1 substrate specificity and PCNA-mediated activation in DNA replication and repair. Cell 116, 39–50.

    Article  PubMed  CAS  Google Scholar 

  19. Xiao, J., and Singleton, S. F. (2002) Elucidating a key intermediate in homologous DNA strand exchange: structural characterization of the RecA-triple-stranded DNA complex using fluorescence resonance energy transfer. J. Mol. Biol. 320, 529–558.

    Article  PubMed  CAS  Google Scholar 

  20. McKinney, S. A., Joo, C., and Ha, T. (2006) Analysis of single-molecule FRET trajectories using hidden Markov modeling. Biophys. J. 91, 1941–1951.

    Article  PubMed  CAS  Google Scholar 

  21. Gupta, R. C., Golub, E. I., Wold, M. S., and Radding, C. M. (1998) Polarity of DNA strand exchange promoted by recombination proteins of the RecA family. Proc. Natl Acad. Sci. USA 95, 9843–9848.

    Article  PubMed  CAS  Google Scholar 

  22. Kuznetsov, S. V., Kozlov, A. G., Lohman, T. M., and Ansari, A. (2006) Microsecond dynamics of Protein–DNA interactions: direct observation of the wrapping/unwrapping kinetics of single-stranded DNA around the E. coli SSB tetramer. J. Mol. Biol. 359, 55–65.

    Article  PubMed  CAS  Google Scholar 

  23. Lucius, A. L., Jason Wong, C., and Lohman, T. M. (2004) Fluorescence stopped-flow studies of single turnover kinetics of E. coli RecBCD helicase-catalyzed DNA unwinding. J. Mol. Biol. 339, 731–750.

    Article  PubMed  CAS  Google Scholar 

  24. Kvaratskhelia, M., Wardleworth, B. N., Bond, C. S., Fogg, J. M., Lilley, D. M., and White, M. F. (2002) Holliday junction resolution is modulated by archaeal chromatin components in vitro. J. Biol. Chem. 277, 2992–2996.

    Article  PubMed  CAS  Google Scholar 

  25. Furey, W. S., Joyce, C. M., Osborne, M. A., Klenerman, D., Peliska, J. A., and Balasubramanian, S. (1998) Use of fluorescence resonance energy transfer to investigate the conformation of DNA substrates bound to the Klenow fragment. Biochemistry 37, 2979–2990.

    Article  PubMed  CAS  Google Scholar 

  26. Mukhopadhyay, J., Mekler, V., Kortkhonjia, E., Kapanidis, A. N., Ebright, Y. W., and Ebright, R. H. (2003) Fluorescence resonance energy transfer (FRET) in analysis of transcription-complex structure and function. Methods Enzymol. 371, 144–159.

    Article  PubMed  CAS  Google Scholar 

  27. Heyduk, T., and Niedziela-Majka, A. (2001) Fluorescence resonance energy transfer analysis of escherichia coli RNA polymerase and polymerase-DNA complexes. Biopolymers 61, 201–213.

    Article  PubMed  Google Scholar 

  28. Margeat, E., Kapanidis, A. N., Tinnefeld, P., Wang, Y., Mukhopadhyay, J., Ebright, R. H., and Weiss, S. (2006) Direct observation of abortive initiation and promoter escape within single immobilized transcription complexes. Biophys. J. 90, 1419–1431.

    Article  PubMed  CAS  Google Scholar 

  29. Kapanidis, A. N., Margeat, E., Ho, S. O., Kortkhonjia, E., Weiss, S., and Ebright, R. H. (2006) Initial transcription by RNA polymerase proceeds through a DNA-scrunching mechanism. Science 314, 1144–1147.

    Article  PubMed  Google Scholar 

  30. Lee, S. P., and Han, M. K. (1997) Fluorescence assays for DNA cleavage. Methods Enzymol. 278, 343–363.

    Article  PubMed  CAS  Google Scholar 

  31. Eggeling, C., Jager, S., Winkler, D., and Kask, P. (2005) Comparison of different fluorescence fluctuation methods for their use in FRET assays: monitoring a protease reaction. Curr. Pharm. Biotechnol. 6, 351–371.

    Article  PubMed  CAS  Google Scholar 

  32. Ghosh, S. S., Eis, P. S., Blumeyer, K., Fearon, K., and Millar, D. P. (1994) Real time kinetics of restriction endonuclease cleavage monitored by fluorescence resonance energy transfer. Nucleic Acids Res. 22, 3155–3159.

    Article  PubMed  CAS  Google Scholar 

  33. Hiller, D. A., Rodriguez, A. M., and Perona, J. J. (2005) Non-cognate enzyme-DNA complex: structural and kinetic analysis of EcoRV endonuclease bound to the EcoRI recognition site GAATTC. J. Mol. Biol. 354, 121–136.

    Article  PubMed  CAS  Google Scholar 

  34. Ray, P. C., Fortner, A., and Darbha, G. K. (2006) Gold nanoparticle based FRET assay for the detection of DNA cleavage. J Phys Chem B 110, 20745–20748.

    Article  PubMed  CAS  Google Scholar 

  35. Lin, J., Gao, H., Schallhorn, K. A., Harris, R. M., Cao, W., and Ke, P. C. (2007) Lesion recognition and cleavage by endonuclease V: a single-molecule study. Biochemistry 46, 7132–7137.

    Article  PubMed  CAS  Google Scholar 

  36. van der Meer, B. W. (2002) Kappa-squared: from nuisance to new sense. J. Biotechnol. 82, 181–196.

    PubMed  CAS  Google Scholar 

  37. Klostermeier, D., and Millar, D. P. (2001) Time-resolved fluorescence resonance energy transfer: a versatile tool for the analysis of nucleic acids. Biopolymers 61, 159–179.

    Article  PubMed  Google Scholar 

  38. Cornish, P. V., and Ha, T. (2007) A survey of single-molecule techniques in chemical biology. ACS Chem. Biol. 2, 53–61.

    Article  PubMed  CAS  Google Scholar 

  39. Ha, T. (2001) Single-molecule fluorescence resonance energy transfer. Methods 25, 78–86.

    Article  PubMed  CAS  Google Scholar 

  40. Ha, T. (2004) Structural dynamics and processing of nucleic acids revealed by single-molecule spectroscopy. Biochemistry 43, 4055–4063.

    Article  PubMed  CAS  Google Scholar 

  41. Ritort, F. (2006) Single-molecule experiments in biological physics: methods and applications J. Phys.: Condens. Matter 18, R531–R583.

    Article  CAS  Google Scholar 

  42. Moerner, W. E., and Fromm, D. P. (2003) Methods of single-molecule fluorescence spectroscopy and microscopy. Rev. Sci. Instrum. 74, 3597.

    Article  CAS  Google Scholar 

  43. Haustein, E., and Schwille, P. (2007) Fluorescence correlation spectroscopy: novel variations of an established technique. Annu. Rev. Biophys. Biomol. Struct. 36, 151–169.

    Article  PubMed  CAS  Google Scholar 

  44. Schwille, P. (2003) TIR-FCS: staying on the surface can sometimes be better. Biophys. J. 85, 2783–2784.

    Article  PubMed  CAS  Google Scholar 

  45. Wazawa, T., and Ueda, M. (2005) Total internal reflection fluorescence microscopy in single molecule nanobioscience. Adv. Biochem. Eng. Biotechnol. 95, 77–106.

    PubMed  CAS  Google Scholar 

  46. Rasnik, I., McKinney, S. A., and Ha, T. (2005) Surfaces and orientations: much to FRET about? Acc. Chem. Res. 38, 542–548.

    Article  PubMed  CAS  Google Scholar 

  47. Cisse, I., Okumus, B., Joo, C., and Ha, T. (2007) Fueling protein DNA interactions inside porous nanocontainers. Proc. Natl Acad. Sci. USA 104, 12646–12650.

    Article  PubMed  CAS  Google Scholar 

  48. Myong, S., Bruno, M. M., Pyle, A. M., and Ha, T. (2007) Spring-loaded mechanism of DNA unwinding by hepatitis C virus NS3 helicase. Science 317, 513–516.

    Article  PubMed  CAS  Google Scholar 

  49. Lu, H. P., Iakoucheva, L. M., and Ackerman, E. J. (2001) Single-molecule conformational dynamics of fluctuating noncovalent DNA–protein interactions in DNA damage recognition. J. Am. Chem. Soc. 123, 9184–9185.

    Article  PubMed  CAS  Google Scholar 

  50. Segers-Nolten, G. M., Wyman, C., Wijgers, N., Vermeulen, W., Lenferink, A. T., Hoeijmakers, J. H., Greve, J., and Otto, C. (2002) Scanning confocal fluorescence microscopy for single molecule analysis of nucleotide excision repair complexes. Nucleic Acids Res. 30, 4720–4727.

    Article  PubMed  CAS  Google Scholar 

  51. Lemay, J. F., Penedo, J. C., Tremblay, R., Lilley, D. M., and Lafontaine, D. A. (2006) Folding of the adenine riboswitch. Chem. Biol. 13, 857–868.

    Article  PubMed  CAS  Google Scholar 

  52. Braslavsky, I., Hebert, B., Kartalov, E., and Quake, S. R. (2003) Sequence information can be obtained from single DNA molecules. Proc. Natl Acad. Sci. USA 100, 3960–3964.

    Article  PubMed  CAS  Google Scholar 

  53. Groll, J., Amirgoulova, E. V., Ameringer, T., Heyes, C. D., Rocker, C., Nienhaus, G. U., and Moller, M. (2004) Biofunctionalized, ultrathin coatings of cross-linked star-shaped poly(ethylene oxide) allow reversible folding of immobilized proteins. J. Am. Chem. Soc. 126, 4234–4239.

    Article  PubMed  CAS  Google Scholar 

  54. Adachi, K., Yasuda, R., Noji, H., Itoh, H., Harada, Y., Yoshida, M., and Kinosita, K., Jr. (2000) Stepping rotation of F1-ATPase visualized through angle-resolved single-fluorophore imaging. Proc. Natl Acad. Sci. USA 97, 7243–7247.

    Article  PubMed  CAS  Google Scholar 

  55. Kastner, C. N., Prummer, M., Sick, B., Renn, A., Wild, U. P., and Dimroth, P. (2003) The citrate carrier CitS probed by single-molecule fluorescence spectroscopy. Biophys. J. 84, 1651–1659.

    Article  PubMed  CAS  Google Scholar 

  56. Boukobza, E., Sonnenfeld, A., and Haran, G. (2001) Immobilization in surface-tethered lipid vesicles as a new tool for single biomolecule spectroscopy. J. Phys. Chem. B 105, 12165–12170.

    Article  CAS  Google Scholar 

  57. Kapanidis, A. N., and Weiss, S. (2002) Fluorescent probes and bioconjugation chemistries for single-molecule fluorescence analysis of biomolecules. J. Chem. Phys. 117, 10953–10964.

    Article  CAS  Google Scholar 

  58. Sapsford, K. E., Berti, L., and Medintz, I. L. (2006) Materials for fluorescence resonance energy transfer analysis: beyond traditional donor–acceptor combinations. Angew. Chem. Int. Ed. Engl. 45, 4562–4589.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Biological and Biotechnology Science Research Council (UK), the Royal Society (UK), and the National Sciences and Engineering Research Council (Canada), and the Universities of Sherbrooke (Canada) and St Andrews (UK) for financial support. We also thank all members of our labs for helpful discussion and critical reading of the manuscript. J. C. P is a Fellow of the Scottish Universities Physics Alliance (SUPA). DAL is a CIHR New Investigator scholar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Carlos Penedo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Blouin, S., Craggs, T.D., Lafontaine, D.A., Penedo, J.C. (2009). Functional Studies of DNA-Protein Interactions Using FRET Techniques. In: Leblanc, B., Moss, T. (eds) DNA-Protein Interactions. Methods in Molecular Biology™, vol 543. Humana Press. https://doi.org/10.1007/978-1-60327-015-1_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-015-1_28

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-014-4

  • Online ISBN: 978-1-60327-015-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics