Skip to main content

Single-Molecule Fluorescence Methods to Study Protein Exchange Kinetics in Supramolecular Complexes

  • Protocol
  • First Online:
Single Stranded DNA Binding Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2281))

Abstract

Recent single-molecule studies have demonstrated that the composition of multi-protein complexes can strike a balance between stability and dynamics. Proteins can dynamically exchange in and out of the complex depending on their concentration in solution. These exchange dynamics are a key determinant of the molecular pathways available to multi-protein complexes. It is therefore important that we develop robust and reproducible assays to study protein exchange. Using DNA replication as an example, we describe three single-molecule fluorescence assays used to study protein exchange dynamics. In the chase exchange assay, fluorescently labeled proteins are challenged by unlabeled proteins, where exchange results in the disappearance of the fluorescence signal. In the FRAP exchange assay, fluorescently labeled proteins are photobleached before exchange is measured by an increase in fluorescence as non-bleached proteins exchange into the complex. Finally, in the two-color exchange assay, proteins are labeled with two different fluorophores and exchange is visualized by detecting changes in color. All three assays compliment in their ability to elucidate the dynamic behavior of proteins in large biological systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Monachino E, Spenkelink LM, van Oijen AM (2017) Watching cellular machinery in action, one molecule at a time. J Cell Biol 216(1):41–51. https://doi.org/10.1083/jcb.201610025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chen T-Y, Santiago AG, Jung W, Krzemiński Ł, Yang F, Martell DJ, Helmann JD, Chen P (2015) Concentration- and chromosome-organization-dependent regulator unbinding from DNA for transcription regulation in living cells. Nat Commun 6:7445–7445. https://doi.org/10.1038/ncomms8445

    Article  PubMed  PubMed Central  Google Scholar 

  3. Gibb B, Ye LF, Gergoudis SC, Kwon Y, Niu H, Sung P, Greene EC (2014) Concentration-dependent exchange of replication protein A on single-stranded DNA revealed by single-molecule imaging. PLoS One 9(2):e87922–e87922. https://doi.org/10.1371/journal.pone.0087922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Graham JS, Johnson RC, Marko JF (2011) Concentration-dependent exchange accelerates turnover of proteins bound to double-stranded DNA. Nucleic Acids Res 39(6):2249–2259. https://doi.org/10.1093/nar/gkq1140

    Article  CAS  PubMed  Google Scholar 

  5. Delalez NJ, Wadhams GH, Rosser G, Xue Q, Brown MT, Dobbie IM, Berry RM, Leake MC, Armitage JP (2010) Signal-dependent turnover of the bacterial flagellar switch protein FliM. Proc Natl Acad Sci U S A 107(25):11347–11351. https://doi.org/10.1073/pnas.1000284107

    Article  PubMed  PubMed Central  Google Scholar 

  6. Lewis JS, Spenkelink LM, Schauer GD, Yurieva O, Mueller SH, Natarajan V, Kaur G, Maher C, Kay C, O’Donnell ME, van Oijen AM (2020) Tunability of DNA polymerase stability during eukaryotic DNA replication. Mol Cell 77(1):17–25.e15. https://doi.org/10.1016/j.molcel.2019.10.005

    Article  CAS  PubMed  Google Scholar 

  7. Spenkelink LM, Lewis JS, Jergic S, Xu ZQ, Robinson A, Dixon NE, van Oijen AM (2019) Recycling of single-stranded DNA-binding protein by the bacterial replisome. Nucleic Acids Res 47:4111–4123. https://doi.org/10.1093/nar/gkz090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lewis JS, Spenkelink LM, Jergic S, Wood EA, Monachino E, Horan NP, Duderstadt KE, Cox MM, Robinson A, Dixon NE, van Oijen AM (2017) Single-molecule visualization of fast polymerase turnover in the bacterial replisome. eLife 6:e23932. https://doi.org/10.7554/eLife.23932

    Article  PubMed  PubMed Central  Google Scholar 

  9. Geertsema HJ, Kulczyk AW, Richardson CC, van Oijen AM (2014) Single-molecule studies of polymerase dynamics and stoichiometry at the bacteriophage T7 replication machinery. Proc Natl Acad Sci U S A 111(11):4073–4078. https://doi.org/10.1073/pnas.1402010111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Beattie TR, Kapadia N, Nicolas E, Uphoff S, Wollman AJ, Leake MC, Reyes-Lamothe R (2017) Frequent exchange of the DNA polymerase during bacterial chromosome replication. eLife 6:e21763. https://doi.org/10.7554/eLife.21763

    Article  PubMed  PubMed Central  Google Scholar 

  11. Loparo JJ, Kulczyk AW, Richardson CC, van Oijen AM (2011) Simultaneous single-molecule measurements of phage T7 replisome composition and function reveal the mechanism of polymerase exchange. Proc Natl Acad Sci U S A 108(9):3584–3589. https://doi.org/10.1073/pnas.1018824108

    Article  PubMed  PubMed Central  Google Scholar 

  12. Liao Y, Li Y, Schroeder JW, Simmons LA, Biteen JS (2016) Single-molecule DNA polymerase dynamics at a bacterial replisome in live cells. Biophys J 111(12):2562–2569. https://doi.org/10.1016/j.bpj.2016.11.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Aberg C, Duderstadt KE, van Oijen AM (2016) Stability versus exchange: a paradox in DNA replication. Nucleic Acids Res 44(10):4846–4854. https://doi.org/10.1093/nar/gkw296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sing CE, Olvera de la Cruz M, Marko JF (2014) Multiple-binding-site mechanism explains concentration-dependent unbinding rates of DNA-binding proteins. Nucleic Acids Res 42(6):3783–3791. https://doi.org/10.1093/nar/gkt1327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mueller SH, Spenkelink LM, van Oijen AM (2019) When proteins play tag: the dynamic nature of the replisome. Biophys Rev 11(4):641–651. https://doi.org/10.1007/s12551-019-00569-4

    Article  PubMed Central  Google Scholar 

  16. van Oijen AM, Duderstadt KE, Xiao J, Fishel R (2018) Plasticity of multi-protein complexes. J Mol Biol 430(22):4441–4442. https://doi.org/10.1016/j.jmb.2018.08.008

    Article  CAS  PubMed  Google Scholar 

  17. van Oijen AM, Dixon NE (2015) Probing molecular choreography through single-molecule biochemistry. Nat Stuct Mol Biol 22(12):948–952. https://doi.org/10.1038/nsmb.3119

    Article  CAS  Google Scholar 

  18. Tanner NA, Loparo JJ, Hamdan SM, Jergic S, Dixon NE, van Oijen AM (2009) Real-time single-molecule observation of rolling-circle DNA replication. Nucleic Acids Res 37(4):e27. https://doi.org/10.1093/nar/gkp006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Monachino E, Ghodke H, Spinks RR, Hoatson BS, Jergic S, Xu ZQ, Dixon NE, van Oijen AM (2018) Design of DNA rolling-circle templates with controlled fork topology to study mechanisms of DNA replication. Anal Biochem 557:42–45. https://doi.org/10.1016/j.ab.2018.07.008

    Article  CAS  PubMed  Google Scholar 

  20. Geertsema HJ, Duderstadt KE, van Oijen AM (2015) Single-molecule observation of prokaryotic DNA replication. Methods Mol Biol 1300:219–238. https://doi.org/10.1007/978-1-4939-2596-4_14

    Article  CAS  PubMed  Google Scholar 

  21. Kaur G, Lewis JS, van Oijen AM (2019) Shining a spotlight on DNA: single-molecule methods to visualise DNA. Molecules 24(3):491. https://doi.org/10.3390/molecules24030491

    Article  CAS  PubMed Central  Google Scholar 

  22. Tinevez J-Y, Perry N, Schindelin J, Hoopes GM, Reynolds GD, Laplantine E, Bednarek SY, Shorte SL, Eliceiri KW (2017) TrackMate: an open and extensible platform for single-particle tracking. Methods 115:80–90. https://doi.org/10.1016/j.ymeth.2016.09.016

    Article  CAS  PubMed  Google Scholar 

  23. Axelrod D, Koppel DE, Schlessinger J, Elson E, Webb WW (1976) Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophys J 16(9):1055–1069

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antoine M. van Oijen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Spinks, R.R., Spenkelink, L.M., van Oijen, A.M. (2021). Single-Molecule Fluorescence Methods to Study Protein Exchange Kinetics in Supramolecular Complexes. In: Oliveira, M.T. (eds) Single Stranded DNA Binding Proteins. Methods in Molecular Biology, vol 2281. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1290-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1290-3_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1289-7

  • Online ISBN: 978-1-0716-1290-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics