Skip to main content

The Reference Point Method in Primer Design

  • Protocol
PCR Primer Design

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 402))

Summary

The conflicts between several design objectives for PCR primers are computationally resolved by specifying a set of ideal parameters and searching for primer pairs whose parameters approximate this ideal point as close as possible. It thus becomes feasible to identify an “optimum” and to efficiently compute it. User-specified target regions, primer conditions, and procedural conditions are obeyed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Keeney, R.L. and Raiffa, H. (1976) Decisions with Multiple Objectives. Wiley, New York.

    Google Scholar 

  2. Yu, P.L. (1989) Multiple criteria decision making: five basic concepts, in Handbooks in OR and Management Science I (Nemhauser, G. et al. eds.), North-Holland, Amsterdam, 663–699.

    Google Scholar 

  3. Kim, K.H. and Kim, Y. (2004) Variational transition state theory calculations for the rate constants of the hydrogen scrambling and the dissociation of BH_5 using the multiconfiguration molecular mechanics algorithm. The Journal of Chemical Physics 120, 623–630.

    Article  PubMed  CAS  Google Scholar 

  4. Mullis, K.B. and Faloona, F.A. (1987) Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods in Enzymology 155, 335–350.

    Article  PubMed  CAS  Google Scholar 

  5. Sahdra, B. and Thagard, P. (2003) Procedural knowledge in molecular biology. Philosophical Psychology 16, 477–498.

    Article  Google Scholar 

  6. Kämpke, T., Kieninger, M. and Mecklenburg, M. (2001) Efficient primer design algorithms. Bioinformatics 17, 214–225.

    Article  PubMed  Google Scholar 

  7. Breslauer, K.J., Frank, R., Blocker, H. and Marky, L.A. (1986) Predicting DNA duplex stability from the base sequence. Proceedings of the National Academy of Sciences of the United States of America 83, 3746–3750.

    Article  PubMed  CAS  Google Scholar 

  8. Rychlik, W., Spencer, W.J. and Rhoads, R.E. (1990) Optimization of the annealing temperature for DNA amplification in vitro. Nucleic Acids Research 18, 6409–6412.

    Article  PubMed  CAS  Google Scholar 

  9. Owczarzy, R., Vallone, P.M., Gallo, F.J., Paner, T.M., Lane, M.J. and Benight, A.S. (1997) Predicting sequence-dependent melting stability of short duplex DNA oligomers. Biopolymers 44, 217–239.

    Article  PubMed  CAS  Google Scholar 

  10. Thein, S.L. and Wallace, R.B. (1986) The use of synthetic oligonucleotides as specific hybridization probes in the diagnosis of genetic disorder, in Human Genetic Diseases: A Practical Approach (Davis, K.E. ed.), IRL Pres, Herndon.

    Google Scholar 

  11. Hillier, L. and Green, P. (1991) OSP: A computer program for predictions of DNA duplex stability. PCR Methods and Applications 1, 124–128.

    PubMed  CAS  Google Scholar 

  12. Fleury, G., Hero, A., Yoshida, S., Carter, T., Barlow, C. and Swaroop, A. (2002) Pareto analysis for gene filtering in microarray experiments. Proceedings of the 11th European Signal Processing Conference, Toulouse.

    Google Scholar 

  13. Prezioso, V.R. (2005) General notes on primer design in PCR. Eppendorf North America, Westbury, http://www.eppendorfna.com.

  14. Yuryev, A., Huang, J., Pohl, M., Patch, R., Watson, F., Bell, P., Donaldson, M., Phillips, M.S. and Boyce-Jacino, M.T. (2002) Predicting the success of primer extension genotyping assays using statistical modeling. Nucleic Acids Research 30, e131.

    Article  PubMed  Google Scholar 

  15. Tusnady, G.E., Simon, I., Varadi, A. and Aranyi, T. (2005) BiSearch: primer-design and search tool for PCR on bisulfite-treated genomes. Nucleic Acids Research 33, e9.

    Article  PubMed  Google Scholar 

  16. Huang, Y.-C., Chang, C.F., Chan, C.H., Yeh, T.J., Chang, Y.C., Chen, C.C. and Kao, C.Y. (2005) Integrated minimum-set primers and unique probe design algorithms for differential detection on symptom-related pathogens. Bioinformatics 21, 4330–4337.

    Article  PubMed  CAS  Google Scholar 

  17. Agrafiotis, D.K. (2001) Multiobjective optimization of combinatorial libraries. IBM Journal of Research and Development 45, 545–566.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press

About this protocol

Cite this protocol

Kämpke, T. (2007). The Reference Point Method in Primer Design. In: Yuryev, A. (eds) PCR Primer Design. Methods in Molecular Biology™, vol 402. Humana Press. https://doi.org/10.1007/978-1-59745-528-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-528-2_4

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-725-9

  • Online ISBN: 978-1-59745-528-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics