Skip to main content

Vacuole-Targeted Proteins: Ins and Outs of Subcellular Localization Studies

  • Protocol
  • First Online:
Plant Vacuolar Trafficking

Abstract

Accurate and efficient demonstrations of protein localizations to the vacuole or tonoplast remain strict prerequisites to decipher the role of vacuoles in the whole plant cell biology and notably in defence processes. In this chapter, we describe a reliable procedure of protein subcellular localization study through transient transformations of Catharanthus roseus or onion cells and expression of fusions with fluorescent proteins allowing minimizing artefacts of targeting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Endler A, Meyer S, Schelbert S et al (2006) Identification of a vacuolar sucrose transporter in barley and arabidopsis mesophyll cells by a tonoplast proteomic approach. Plant Physiol 141:196–207. https://doi.org/10.1104/pp.106.079533

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Jaquinod M, Villiers F, Kieffer-Jaquinod S et al (2007) A proteomics dissection of Arabidopsis thaliana vacuoles isolated from cell culture. Mol Cell Proteomics 6:394–412. https://doi.org/10.1074/mcp.M600250-MCP200

    Article  PubMed  CAS  Google Scholar 

  3. Zouhar J, Rojo E (2009) Plant vacuoles: where did they come from and where are they heading? Curr Opin Plant Biol 12:677–684. https://doi.org/10.1016/j.pbi.2009.08.004

    Article  CAS  PubMed  Google Scholar 

  4. Martinoia E, Meyer S, De Angeli A et al (2012) Vacuolar transporters in their physiological context. Annu Rev Plant Biol 63:183–213. https://doi.org/10.1146/annurev-arplant-042811-105608

    Article  PubMed  CAS  Google Scholar 

  5. Hunter PR, Craddock CP, Di Benedetto S et al (2007) Fluorescent reporter proteins for the tonoplast and the vacuolar lumen identify a single vacuolar compartment in Arabidopsis cells. Plant Physiol 145(4):1371–1382. https://doi.org/10.1104/pp.107.103945

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Olbrich A, Hillmer S, Hinz G et al (2007) Newly formed vacuoles in root meristems of barley and pea seedlings have characteristics of both protein storage and lytic vacuoles. Plant Physiol 145(4):1383–1394. https://doi.org/10.1104/pp.107.108985

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Frigerio L, Hinz G, Robinson DG (2008) Multiple vacuoles in plant cells: rule or exception? Traffic 9:1564–1570. https://doi.org/10.1111/j.1600-0854.2008.00776.x

    Article  PubMed  CAS  Google Scholar 

  8. Masclaux FG, Galaud JP, Pont-Lezica R (2005) The riddle of the plant vacuolar sorting receptors. Protoplasma 226(3–4):103–108. https://doi.org/10.1007/s00709-005-0117-3

    Article  PubMed  CAS  Google Scholar 

  9. Brown JC, Jolliffe NA, Frigerio L et al (2003) Sequence-specific, Golgi-dependent targeting of the castor bean 2S albumin to the vacuole in tobacco protoplasts. Plant J 36:711–719. https://doi.org/10.1046/j.1365-313X.2003.01913.x

    Article  PubMed  CAS  Google Scholar 

  10. Nakamura K, Matsuoka K, Mukumoto F et al (1993) Processing and transport to the vacuole of a precursor to sweet potato sporamin in transformed tobacco cell line BY-2. J Exp Bot 44:331–338

    CAS  Google Scholar 

  11. Paris N, Neuhaus J-M (2002) BP-80 as a vacuolar sorting receptor. Plant Mol Biol 50(6):903–914. https://doi.org/10.1023/A:1021205715324

    Article  PubMed  CAS  Google Scholar 

  12. Gattolin S, Sorieul M, Frigerio L (2011) Mapping of tonoplast intrinsic proteins in maturing and germinating arabidopsis seeds reveals dual localization of embryonic TIPs to the tonoplast and plasma membrane. Mol Plant 4:180–189. https://doi.org/10.1093/mp/ssq051

    Article  PubMed  CAS  Google Scholar 

  13. Yamada K, Osakabe Y, Mizoi J et al (2010) Functional analysis of an Arabidopsis thaliana abiotic stress-inducible facilitated diffusion transporter for monosaccharides. J Biol Chem 285:1138–1146. https://doi.org/10.1074/jbc.M109.054288

    Article  PubMed  CAS  Google Scholar 

  14. Larisch N, Schulze C, Galione A et al (2012) A N-terminal dileucine motif directs two-pore channels to the tonoplast of plant cells. Traffic 13:012–1022. https://doi.org/10.1111/j.1600-0854.2012.01366.x

    Article  CAS  Google Scholar 

  15. Komarova NY, Meier S, Meier A et al (2012) Determinants for Arabidopsis peptide transporter targeting to the tonoplast or plasma membrane. Traffic 13:1090–1105. https://doi.org/10.1111/j.1600-0854.2012.01370.x

    Article  PubMed  CAS  Google Scholar 

  16. Wolfenstetter S, Wirsching P, Dotzauer D et al (2012) Routes to the tonoplast: the sorting of tonoplast transporters in Arabidopsis mesophyll protoplasts. Plant Cell 24:215–232. https://doi.org/10.1105/tpc.111.090415

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Guirimand G, Courdavault V, Lanoue A et al (2010) Strictosidine activation in Apocynaceae: towards a “nuclear time bomb”? BMC Plant Biol 10:182. https://doi.org/10.1186/1471-2229-10-182

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Costa MMR, Hilliou F, Duarte P et al (2008) Molecular cloning and characterization of a vacuolar class III peroxidase involved in the metabolism of anticancer alkaloids in Catharanthus roseus. Plant Physiol 146:403–417. https://doi.org/10.1104/pp.107.107060

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Kissen R, Rossiter JT, Bones AM (2009) The ‘mustard oil bomb’: not so easy to assemble?! Localization, expression and distribution of the components of the myrosinase enzyme system. Phytochem Rev 8(1):69–86. https://doi.org/10.1007/s11101-008-9109-1

    Article  CAS  Google Scholar 

  20. Guirimand G, Courdavault V, St-Pierre B et al (2010) Biosynthesis and regulation of alkaloids. In: Pua E, Davey M (eds) Plant developmental biology – biotechnological perspectives, vol 2. Springer, Heidelberg, pp 139–160. https://doi.org/10.1007/978-3-642-04670-4_8

    Chapter  Google Scholar 

  21. St-Pierre B, Besseau S, Clastre M et al (2013) Deciphering the evolution, cell biology and regulation of monoterpene indole alkaloids. Adv Bot Res 68:73–109. https://doi.org/10.1016/B978-0-12-408061-4.00003-1

    Article  CAS  Google Scholar 

  22. Parage C, Foureau E, Kellner F et al (2016) Class II cytochrome P450 reductase governs the biosynthesis of alkaloids. Plant Physiol 172:1563–1577. https://doi.org/10.1104/pp.16.00801

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Dugé de Bernonville T, Carqueijeiro I, Lanoue A et al (2017) Folivory elicits a strong defense reaction in Catharanthus roseus: metabolomic and transcriptomic analyses reveal distinct local and systemic responses. Sci Rep 7:40453. https://doi.org/10.1038/srep40453

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Stanton RA, Gernert KM, Nettles JH et al (2011) Drugs that target dynamic microtubules: a new molecular perspective. Med Res Rev 31:443–481. https://doi.org/10.1002/med.20242

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Muto A, Atsukol Nakagawa MD et al (2005) Antineoplastic agents for pediatric anaplastic large cell lymphoma: vinblastine is the most effective in vitro. Leuk Lymphoma 46(10):1489–1496. https://doi.org/10.1080/10428190500126547

    Article  PubMed  CAS  Google Scholar 

  26. Dugé de Bernonville T, Clastre M, Besseau S et al (2015) Phytochemical genomics of the Madagascar periwinkle: unravelling the last twists of the alkaloid engine. Phytochemistry 113:9–23. https://doi.org/10.1016/j.phytochem.2014.07.023

    Article  PubMed  CAS  Google Scholar 

  27. Brown S, Clastre M, Courdavault V et al (2015) De novo production of the plant-derived alkaloid strictosidine in yeast. PNAS 112(11):3205–3210. https://doi.org/10.1073/pnas.1423555112

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Qu Y, Easson MLAE, Froese J et al (2015) Completion of the seven-step pathway from tabersonine to the anticancer drug precursor vindoline and its assembly in yeast. Proc Natl Acad Sci U S A 112(19):6224–6229. https://doi.org/10.1073/pnas.1501821112

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Courdavault V, Papon N, Clastre M et al (2014) A look inside an alkaloid multisite plant: the Catharanthus logistics. Curr Opin Plant Biol 19:43–50. https://doi.org/10.1016/j.pbi.2014.03.010react-text:72

    Article  PubMed  CAS  Google Scholar 

  30. Deus-Neumann B, Zenk MH (1984) A highly selective alkaloid uptake system in vacuoles of higher plants. Planta 162:250–260. https://doi.org/10.1007/BF00397447

    Article  PubMed  CAS  Google Scholar 

  31. Blom TJM, Sierra M, Van Vliet TB et al (1991) Uptake and accumulation of ajmalicine into isolated vacuoles of cultured cells of Catharanthus roseus (L.) G. Don and its conversion into serpentine. Planta 183(2):170–177. https://doi.org/10.1007/BF00197785

    Article  PubMed  CAS  Google Scholar 

  32. Wink M (1993) The plant vacuole: a multifunctional compartment. J Exp Bot 44:231–246

    CAS  Google Scholar 

  33. Carqueijeiro I, Noronha H, Duarte P et al (2013) Vacuolar transport of the medicinal alkaloids from Catharanthus roseus is mediated by a proton-driven antiport. Plant Physiol 162:1486–1496. https://doi.org/10.1104/pp.113.220558

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Sottomayor M, Lopez-Serrano M, DiCosmo F et al (1998) Purification and characterization of alpha-3′,4′-anhydrovinblastine synthase (peroxidase-like) from Catharanthus roseus (L) G. Don. FEBS Lett 428:299–303. https://doi.org/10.1016/S0014-5793(98)00551-1

  35. Stevens LH, Blom TJM, Verpoorte R (1993) Subcellular localization of tryptophan decarboxylase, strictosidine synthase and strictosidine glucosidase in suspensioncultured cells of Catharanthus roseus and Tabernaemontana divaricata. Plant Cell Rep 12:573–576. https://doi.org/10.1007/BF00233063

    Article  PubMed  CAS  Google Scholar 

  36. Payne RME, Xu D, Foureau E et al (2017) An NPF transporter exports a central monoterpene indole alkaloid intermediate from the vacuole. Nat Plants 3:16208. https://doi.org/10.1038/nplants.2016.208

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Mérillon JM, Doireau P, Guillot A et al (1986) Indole alkaloid accumulation and tryptophan decarboxylase activity in Catharanthus roseus cells cultured in three different media. Plant Cell Rep 5(1):23–26. https://doi.org/10.1007/BF00269710

    Article  PubMed  Google Scholar 

  38. Kodja H, Liu D, Mérillon JM et al (1989) Stimulation of indole alkaloid accumulation in suspension cell cultures of Catharanthus roseus (G. Don) by cytokinins. C R Acad Sci Life Sci 309:453–458

    CAS  Google Scholar 

  39. Guirimand G, Burlat V, Oudin A et al (2009) Optimization of the transient transformation of Catharanthus roseus cells by particle bombardment and its application to the subcellular localization of hydroxymethylbutenyl 4-diphosphate synthase and geraniol 10-hydroxylase. Plant Cell Rep 28(8):1215–1234. https://doi.org/10.1007/s00299-009-0722-2

    Article  PubMed  CAS  Google Scholar 

  40. Nelson BK, Cai X, Nebenführ A (2007) A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants. Plant J 51(6):1126–1136. https://doi.org/10.1111/j.1365-313X.2007.03212.x

    Article  CAS  PubMed  Google Scholar 

  41. Hanahan D (1983) Studies on transformation of with plasmids. J Mol Biol 166(4):557–580. https://doi.org/10.1016/S0022-2836(83)80284-8

    Article  PubMed  CAS  Google Scholar 

  42. Yu NY, Wagner JR, Laird MR et al (2010) PSORTb 3.0: Improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics 26(13):1608–1615. https://doi.org/10.1093/bioinformatics/btq249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Emanuelsson O, Nielsen H, Brunak S, von Heijne G (2000) Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol 300:1005–1016. https://doi.org/10.1006/jmbi.2000.3903

    Article  PubMed  CAS  Google Scholar 

  44. Reumann S, Buchwald D, Lingner T (2012) PredPlantPTS1: a Web server for the prediction of plant peroxisomal proteins. Front Plant Sci 3:194. https://doi.org/10.3389/fpls.2012.00194

    Article  PubMed  PubMed Central  Google Scholar 

  45. Kosugi S, Hasebe M, Tomita M, Yanagawa H (2009) Systematic identification of yeast cell cycle-dependent nucleocytoplasmic shuttling proteins by prediction of composite motifs. PNAS 106(25):10171–10176. https://doi.org/10.1073/pnas.0900604106

    Article  PubMed  PubMed Central  Google Scholar 

  46. Latz A, Becker D, Hekman M et al (2007) TPK1, a Ca2+-regulated Arabidopsis vacuole two-pore K+ channel is activated by 14-3-3 proteins. Plant J 52:449–459. https://doi.org/10.1111/j.1365-313X.2007.03255.x

    Article  PubMed  CAS  Google Scholar 

  47. Duarte P, Memelink J, Sottomayor M et al (2010) Fusion with fluorescent proteins for subcellular localization of enzymes involved in plant alkaloid biosynthesis. In: Fett-Netto A (ed) Plant secondary metabolism engineering: methods and applications. Methods in molecular biology, vol 643. Springer protocols. Humana, New York, pp 275–290. https://doi.org/10.1007/978-1-60761-723-5_19

    Chapter  Google Scholar 

  48. Ueki S, Magori S, Lacroix B et al (2013) Transient gene expression in epidermal cells of plant leaves by biolistic DNA delivery. Methods Mol Biol 940:17–26. https://doi.org/10.1007/978-1-62703-110-3_2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Xu K, Huang X, Wu M et al (2014) A rapid, highly efficient and economical method of Agrobacterium-mediated in planta transient transformation in living onion epidermis. PLoS One 9(1):e83556. https://doi.org/10.1371/journal.pone.0083556

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Foureau E, Carqueijeiro I, Dugé de Bernonville T et al (2016) Prequels to synthetic biology: from candidate gene identification and validation to enzyme subcellular localization in plant and yeast cells. In: O’Connor S (ed) Synthetic biology and metabolic engineering in plants and microbes part B: metabolism in plants, methods in enzymology, vol 576. Elsevier, Amsterdam, pp 167–206. https://doi.org/10.1016/bs.mie.2016.02.013

    Chapter  Google Scholar 

  51. Guirimand G, Guihur A, Phillips MA et al (2012) A single gene encodes isopentenyl diphosphate isomerase isoforms targeted to plastids, mitochondria and peroxisomes in Catharanthus roseus. Plant Mol Biol 79(4):443–459. https://doi.org/10.1007/s11103-012-9923-0

    Article  PubMed  CAS  Google Scholar 

  52. Bertheau L, Chefdor F, Guirimand G et al (2012) Identification of five B-type response regulators 1 as members of a multistep phosphorelay system interacting with Histidine-containing Phosphotransfer partners of Populus osmosensor. BMC Plant Biol 12:241–254. https://doi.org/10.1186/1471-2229-12-241

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Munakata R, Olry A, Karamat F et al (2016) Molecular evolution of parsnip (Pastinaca sativa) membrane-bound prenyltransferases for linear and/or angular furanocoumarin biosynthesis. New Phytol 211:332–344. https://doi.org/10.1111/nph.13899

    Article  PubMed  CAS  Google Scholar 

  54. Navarro Gallon SM, Elejalde-Palmett C, Daudu D et al (2017) Virus-induced gene silencing of the two squalene synthase isoforms of apple tree (Malus x domestica L.) negatively impacts phytosterol biosynthesis, plastid pigmentation and leaf growth. Planta 246:45. https://doi.org/10.1007/s00425-017-2681-0

    Article  PubMed  CAS  Google Scholar 

  55. Tamura K, Shimada T, Ono E et al (2003) Why green fluorescent fusion proteins have not been observed in the vacuoles of higher plants. Plant J 35:545–555. https://doi.org/10.1046/j.1365-313X.2003.01822.x

    Article  CAS  PubMed  Google Scholar 

  56. Epimashko S, Meckel T, Fischer-Schliebs E et al (2004) Two functionally different vacuoles for static and dynamic purposes in one plant mesophyll leaf cell. Plant J 37:294–300. https://doi.org/10.1046/j.1365-313X.2003.01958.x

    Article  PubMed  Google Scholar 

  57. Duarte P, Ribeiro D, Henriques G et al (2011) Cloning and characterization of a candidate gene from the medicinal plant Catharanthus roseus through transient expression in mesophyll protoplasts. In: Brown G (ed) Molecular cloning-selected applications in medicine and biology. Intech, New York, pp 291–308. https://doi.org/10.5772/23323

    Chapter  Google Scholar 

  58. Pereira C, Pereira S, Pissarra J (2014) Delivering of proteins to the plant vacuole-an update. Int J Mol Sci 15(5):7611–7623. https://doi.org/10.3390/ijms15057611

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Duarte P, Ribeiro D, Carqueijeiro I et al (2016) Protoplast transformation as a plant-transferable transient expression system. In: Fett-Netto A (ed) Biotechnology of plant secondary metabolism. Methods for field and laboratory, methods in molecular biology, vol 14. Springer protocols. Humana, New York, pp 137–148. https://doi.org/10.1007/978-1-4939-3393-8_13

    Chapter  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge support from the University François-Rabelais of Tours and from the “Région Centre-Val de Loire” (France): ABISAL grant, CatharSIS program and BioPROPHARM Project – ARD2020 Biomédicaments). IC was financed by a postdoctoral fellowship from Région Centre Val de Loire. We thank Marie-Antoinette Marquet, Evelyne Danos, and Cédric Labarre (EA2106 BBV) for help in maintaining cell cultures and plants; Emeline Marais and Céline Mélin (BBV) for valuable technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Courdavault .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Carqueijeiro, I. et al. (2018). Vacuole-Targeted Proteins: Ins and Outs of Subcellular Localization Studies. In: Pereira, C. (eds) Plant Vacuolar Trafficking. Methods in Molecular Biology, vol 1789. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7856-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7856-4_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7855-7

  • Online ISBN: 978-1-4939-7856-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics