Skip to main content

Senescence-Like Phenotypes in Human Nevi

  • Protocol
  • First Online:
Oncogene-Induced Senescence

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1534))

Abstract

Cellular senescence is an irreversible arrest of cell proliferation at the G1 stage of the cell cycle in which cells become refractory to growth stimuli. Senescence is a critical and potent defense mechanism that mammalian cells use to suppress tumors. While there are many ways to induce a senescence response, oncogene-induced senescence (OIS) remains the key to inhibiting progression of cells that have acquired oncogenic mutations. In primary cells in culture, OIS induces a set of measurable phenotypic and behavioral changes, in addition to cell cycle exit. Senescence-associated β-Galactosidase (SA-β-Gal) activity is a main hallmark of senescent cells, along with morphological changes that may depend on the oncogene that is activated, or on the primary cell type. Characteristic cellular changes of senescence include increased size, flattening, multinucleation, and extensive vacuolation. At the molecular level, tumor suppressor genes such as p53 and p16 INK4A may play a role in initiation or maintenance of OIS. Activation of a DNA damage response and a senescence-associated secretory phenotype could delineate the onset of senescence. Despite advances in our understanding of how OIS suppresses some tumor types, the in vivo role of OIS in melanocytic nevi and melanoma remains poorly understood and not validated. In an effort to stimulate research in this field, we review in this chapter the known markers of senescence and provide experimental protocols for their identification by immunofluorescent staining in melanocytic nevi and malignant melanoma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lowe SW, Cepero E, Evan G (2004) Intrinsic tumour suppression. Nature 432(7015):307–315

    Article  CAS  PubMed  Google Scholar 

  2. Larsson LG (2011) Cellular senescence—a barrier against tumor development? Semin Cancer Biol 21(6):347–348

    Article  PubMed  Google Scholar 

  3. Collado M, Serrano M (2010) Senescence in tumours: evidence from mice and humans. Nat Rev Cancer 10(1):51–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Campisi J, d’Adda di Fagagna F (2007) Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol 8(9):729–740

    Article  CAS  PubMed  Google Scholar 

  5. Kuilman T, Michaloglou C, Mooi WJ, Peeper DS (2010) The essence of senescence. Genes Dev 24(22):2463–2479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Harrington L, Robinson MO (2002) Telomere dysfunction: multiple paths to the same end. Oncogene 21(4):592–597

    Article  CAS  PubMed  Google Scholar 

  7. Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW (1997) Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88(5):593–602

    Article  CAS  PubMed  Google Scholar 

  8. Davies H, Bignell GR, Cox C, Stephens P et al (2002) Mutations of the BRAF gene in human cancer. Nature 417(6892):949–954

    Article  CAS  PubMed  Google Scholar 

  9. Pollock PM, Harper UL, Hansen KS, Yudt LM, Stark M, Robbins CM et al (2003) High frequency of BRAF mutations in nevi. Nat Genet 33(1):19–20

    Article  CAS  PubMed  Google Scholar 

  10. Michaloglou C, Vredeveld LC, Soengas MS, Denoyelle C, Kuilman T, van der Horst CM et al (2005) BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature 436(7051):720–724

    Article  CAS  PubMed  Google Scholar 

  11. Blagosklonny MV (2003) Cell senescence and hypermitogenic arrest. EMBO Rep 4(4):358–362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Blagosklonny MV (2011) Cell cycle arrest is not senescence. Aging 3(2):94–101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lee BY, Han JA, Im JS, Morrone A, Johung K, Goodwin EC et al (2006) Senescence-associated beta-galactosidase is lysosomal beta-galactosidase. Aging Cell 5(2):187–195

    Article  CAS  PubMed  Google Scholar 

  14. Tran S, Rizos H (2013) Human nevi lack distinguishing senescence traits. Aging 5(2):98–99

    Article  PubMed  PubMed Central  Google Scholar 

  15. Parrinello S, Coppe JP, Krtolica A, Campisi J (2005) Stromal-epithelial interactions in aging and cancer: senescent fibroblasts alter epithelial cell differentiation. J Cell Sci 118(3):485–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Freund A, Orjalo AV, Desprez PY, Campisi J (2010) Inflammatory networks during cellular senescence: causes and consequences. Trends Mol Med 16(5):238–246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Patil CK, Mian IS, Campisi J (2005) The thorny path linking cellular senescence to organismal aging. Mech Ageing Dev 126(10):1040–1045

    Article  PubMed  Google Scholar 

  18. Tran SL, Haferkamp S, Scurr LL, Gowrishankar K, Becker TM, Desilva C et al (2012) Absence of distinguishing senescence traits in human melanocytic nevi. J Invest Dermatol 132(9):2226–2234

    Article  CAS  PubMed  Google Scholar 

  19. Zhang G, Herlyn M (2012) Human nevi: no longer precursors of melanomas? J Invest Dermatol 132(9):2133–2134

    Article  CAS  PubMed  Google Scholar 

  20. Bevona C, Goggins W, Quinn T, Fullerton J, Tsao H (2003) Cutaneous melanomas associated with nevi. Arch Dermatol 139(12):1620–1624

    Article  PubMed  Google Scholar 

  21. Tsao H, Bevona C, Goggins W, Quinn T (2003) The transformation rate of moles (melanocytic nevi) into cutaneous melanoma: a population-based estimate. Arch Dermatol 139(3):282–288

    Article  PubMed  Google Scholar 

  22. Kurz DJ, Decary S, Hong Y, Erusalimsky JD (2000) Senescence-associated (beta)-galactosidase reflects an increase in lysosomal mass during replicative ageing of human endothelial cells. J Cell Sci 113(Pt 20):3613–3622

    CAS  PubMed  Google Scholar 

  23. Bennett DC (2015) Genetics of melanoma progression: the rise and fall of cell senescence. Pigment Cell Melanoma Res 29(2):122–140

    Article  PubMed  Google Scholar 

  24. Ross AL, Sanchez MI, Grichnik JM (2011) Nevus senescence. ISRN Dermatol 2011:642157

    PubMed  PubMed Central  Google Scholar 

  25. Wang H, Mannava S, Grachtchouk V, Zhuang D, Soengas MS, Gudkov AV et al (2008) c-Myc depletion inhibits proliferation of human tumor cells at various stages of the cell cycle. Oncogene 27(13):1905–1915

    Article  CAS  PubMed  Google Scholar 

  26. Goel VK, Ibrahim N, Jiang G, Singhal M, Fee S, Flotte T et al (2009) Melanocytic nevus-like hyperplasia and melanoma in transgenic BRAFV600E mice. Oncogene 28(23):2289–2298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Webster MR, Xu M, Kinzler KA, Kaur A, Appleton J, O’Connell MP et al (2015) Wnt5A promotes an adaptive, senescent-like stress response, while continuing to drive invasion in melanoma cells. Pigment Cell Melanoma Res 28(2):184–195

    Article  CAS  PubMed  Google Scholar 

  28. Noguchi S, Mori T, Otsuka Y, Yamada N, Yasui Y, Iwasaki J et al (2012) Anti-oncogenic microRNA-203 induces senescence by targeting E2F3 protein in human melanoma cells. J Biol Chem 287(15):11769–11777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Haferkamp S, Becker T, Scurr L et al (2008) p16INK4a-induced senescence is disabled by melanoma-associated mutations. Aging Cell 7(5):733–745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang Z, Rosen DG, Yao JL, Huang J, Liu J (2006) Expression of p14ARF, p15INK4b, p16INK4a, and DCR2 increases during prostate cancer progression. Mod Pathol 19(10):1339–1343

    Article  CAS  PubMed  Google Scholar 

  31. Aird K, Zhang R (2013) Detection of senescence-associated heterochromatin foci (SAHF). Methods Mol Biol 965:185–196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

N.F.B. was funded by NIH/NCI 5R01CA74592, NIH/NCI 1R01CA190533, NIH/NIAMS 1R03AR066880, and NIH/NCATS UL1 RR025780. T.T. was funded by NIH/NIAMS 1K01AR063203-01, NIH/NC 1R03CA191937, CCTSI Research grant from NIH/NCATS UL1 RR025780, ACS IRG 57-001-53 from the American Cancer Society and a Dermatology Foundation research grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neil F. Box .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Joselow, A., Lynn, D., Terzian, T., Box, N.F. (2017). Senescence-Like Phenotypes in Human Nevi. In: Nikiforov, M. (eds) Oncogene-Induced Senescence. Methods in Molecular Biology, vol 1534. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6670-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6670-7_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6668-4

  • Online ISBN: 978-1-4939-6670-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics