Skip to main content

Protocol for In Vitro Stacked Molecules Compatible with In Vivo Recombinase-Mediated Gene Stacking

  • Protocol
  • First Online:
Chromosome and Genomic Engineering in Plants

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1469))

Abstract

Previously, we described a method for a recombinase-directed stacking of new DNA to an existing transgenic locus. Here, we describe how we can similarly stack DNA molecules in vitro and that the in vitro derived gene stack can be incorporated into an Agrobacterium transformation vector by in vitro recombination. After transfer to the chromosome by Agroinfection, the transgenic locus harbors a new target site that can be used for the subsequent in vivo stacking of new DNA. Alternatively, the in vitro derived gene stack has the potential to be integrated directly into the plant genome in vivo at a preexisting chromosomal target. Being able to stack DNA in vitro as well as in vivo, and with compatibility between the two systems, brings new flexibility for using the recombinase-mediated approach for transgene stacking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vain P (2007) Thirty years of plant transformation technology development. Plant Biotechnol J 5:221–229

    Article  CAS  PubMed  Google Scholar 

  2. Que Q, Chilton M-DM, de Fontes CM, He C, Nuccio M, Zhu T, Wu Y, Chen JS, Shi L (2010) Trait stacking in transgenic crops: challenges and opportunities. GM Crops 1:220–229

    Article  PubMed  Google Scholar 

  3. Li MZ, Elledge SJ (2007) Harnessing homologous recombination in vitro to generate recombinant DNA via SLIC. Nat Methods 4:251–256

    Article  CAS  PubMed  Google Scholar 

  4. Chen QJ, Zhou HM, Chen J, Wang XC (2006) A Gateway-based platform for multigene plant transformation. Plant Mol Biol 62:927–936

    Article  CAS  PubMed  Google Scholar 

  5. Hartley JL (2000) DNA Cloning using in vitro site-specific recombination. Genome Res 10:1788–1795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sasaki Y, Sone T, Yoshida S, Yahata K, Hotta J, Chesnut JD, Honda T, Imamoto F (2004) Evidence for high specificity and efficiency of multiple recombination signals in mixed DNA cloning by the Multisite Gateway system. J Biotechnol 107:233–243

    Article  CAS  PubMed  Google Scholar 

  7. Lin L, Liu YG, Xu X, Li B (2003) Efficient linking and transfer of multiple genes by a multigene assembly and transformation vector system. Proc Natl Acad Sci U S A 100:5962–5967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Thorpe HM, Smith MCM (1998) In vitro site-specific integration of bacteriophage DNA catalyzed by a recombinase of the resolvase/invertase family. Proc Natl Acad Sci U S A 95:5505–5510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Abremski K, Hoess R (1984) Bacteriophage P1 site-specific recombination. purification and properties of the Cre recombinase protein. J Biol Chem 259:1509–1514

    CAS  PubMed  Google Scholar 

  10. Kim AI, Ghosh P, Aaron MA, Bibb LA, Jain S, Hatfull GF (2003) Mycobacteriophage Bxb1 integrates into the Mycobacterium smegmatis groEL1 gene. Mol Microbiol 50:463–473

    Article  CAS  PubMed  Google Scholar 

  11. Yau YY, Wang Y, Thomson JG, Ow DW (2011) Method for Bxb1-mediated site-specific integration in planta. Methods Mol Biol 701:147–166

    Article  CAS  PubMed  Google Scholar 

  12. Ow DW (2005) Transgene management via multiple site-specific recombination systems. In Vitro Cell Dev Biol-Plant 41:213–219

    Article  CAS  Google Scholar 

  13. Hou LL, Yau YY, Wei JJ, Han ZG, Dong ZC, Ow DW (2014) An open-source system for in planta gene stacking by Bxb1 and Cre recombinases. Mol Plant 7:1756–1765

    Article  CAS  PubMed  Google Scholar 

  14. Li RY, Han ZG, Hou LL, Kaur G, Ow DW (2015) Method for biolistic site-specific integration in plants catalyzed by Bxb1 integrase. Methods Mol Biol. This volume

    Google Scholar 

  15. Studier FW, Moffatt BA (1986) Use of bacteriophage-T7 RNA-polymerase to direct selective high-level expression of cloned genes. J Mol Biol 189:113–130

    Article  CAS  PubMed  Google Scholar 

  16. Grant SGN, Jessee J, Bloom FR, Hanahan D (1990) Differential plasmid rescue from transgenic mouse DNAs into Escherichia-Coli methylation-restriction mutants. Proc Natl Acad Sci U S A 87:4645–4649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Velappan N, Sblattero D, Chasteen L, Pavlik P, Bradbury ARM (2007) Plasmid incompatibility: more compatible than previously thought? Protein Eng Des Sel 20:309–313

    Article  CAS  PubMed  Google Scholar 

  18. Sutcliffe JG (1979) Complete nucleotide-sequence of the Escherichia-Coli plasmid-pBR322. Cold Spring Harb Symp 43:77–90

    Article  CAS  Google Scholar 

  19. Hajdukiewicz P, Svab Z, Maliga P (1994) The small, versatile pPZP family of Agrobacterium binary vectors for plant transformation. Plant Mol Biol 25:989–994

    Article  CAS  PubMed  Google Scholar 

  20. Ormo M, Cubitt AB, Kallio K, Gross LA, Tsien RY, Remington SJ (1996) Crystal structure of the Aequorea victoria green fluorescent protein. Science 273:1392–1395

    Article  CAS  PubMed  Google Scholar 

  21. Dale EC, Ow DW (1991) Gene-Transfer with subsequent removal of the selection gene from the host genome. Proc Natl Acad Sci U S A 88:10558–10562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Russell SH, Hoopes JL, Odell JT (1992) Directed excision of a transgene from the plant genome. Mol Gen Genet 234:49–59

    CAS  PubMed  Google Scholar 

  23. Kholodii G (2001) The shuffling function of resolvases. Gene 239:121–130

    Article  Google Scholar 

  24. Moon HS, Abercrombie LL, Eda S, Blanvillain R, Thomson JG, Ow DW, Stewart CN (2011) Transgene excision in pollen using a codon optimized serine resolvase CinH-RS2 site-specific recombination system. Plant Mol Biol 75:621–631

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Z. Han for pC35SCreB and pZH36. This work received support from Guangdong Province, China Talent Funds 2010 and MOST/Ministry of Agriculture Grant 2010ZX08010-001. Authors also affiliated with the Key laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David W. Ow .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Chen, W., Ow, D.W. (2016). Protocol for In Vitro Stacked Molecules Compatible with In Vivo Recombinase-Mediated Gene Stacking. In: Murata, M. (eds) Chromosome and Genomic Engineering in Plants. Methods in Molecular Biology, vol 1469. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-4931-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-4931-1_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-4929-8

  • Online ISBN: 978-1-4939-4931-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics