Skip to main content

Annotating and Interpreting Linear and Cyclic Peptide Tandem Mass Spectra

  • Protocol
  • First Online:
Nonribosomal Peptide and Polyketide Biosynthesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1401))

Abstract

Nonribosomal peptides often possess pronounced bioactivity, and thus, they are often interesting hit compounds in natural product-based drug discovery programs. Their mass spectrometric characterization is difficult due to the predominant occurrence of non-proteinogenic monomers and, especially in the case of cyclic peptides, the complex fragmentation patterns observed. This makes nonribosomal peptide tandem mass spectra annotation challenging and time-consuming. To meet this challenge, software tools for this task have been developed. In this chapter, the workflow for using the software mMass for the annotation of experimentally obtained peptide tandem mass spectra is described. mMass is freely available (http://www.mmass.org), open-source, and the most advanced and user-friendly software tool for this purpose. The software enables the analyst to concisely annotate and interpret tandem mass spectra of linear and cyclic peptides. Thus, it is highly useful for accelerating the structure confirmation and elucidation of cyclic as well as linear peptides and depsipeptides.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Tiburzi F, Visca P, Imperi F (2007) Do nonribosomal peptide synthetases occur in higher eukaryotes? IUBMB Life 59:730–733

    Article  CAS  PubMed  Google Scholar 

  2. Caboche S, Leclère V, Pupin M, Kucherov G et al (2010) Diversity of monomers in nonribosomal peptides: towards the prediction of origin and biological activity. J Bacteriol 192:5143–5150

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Tidgewell K, Clark BR, Gerwick WH (2010) The natural products chemistry of cyanobacteria. In: Mander L, Liu H-W (eds) Comprehensive natural products II: chemistry and biology. Elsevier, Oxford, pp 141–188

    Chapter  Google Scholar 

  4. Niedermeyer T, Brönstrup M (2012) Natural-product drug discovery from microalgae. In: Posten C, Walter C (eds) Microalgal biotechnology: integration and economy. de Gruyter, Berlin, pp 169–200

    Google Scholar 

  5. Ziemert N, Ishida K, Liaimer A, Hertweck C et al (2008) Ribosomal synthesis of tricyclic depsipeptides in bloom-forming cyanobacteria. Angew Chemie Int Ed 47:7756–7759

    Article  CAS  Google Scholar 

  6. Velásquez JE, van der Donk WA (2011) Genome mining for ribosomally synthesized natural products. Curr Opin Chem Biol 15:11–21

    Article  PubMed Central  PubMed  Google Scholar 

  7. Marahiel MA (2009) Working outside the protein-synthesis rules: insights into non-ribosomal peptide synthesis. J Pept Sci 15: 799–807

    Article  CAS  PubMed  Google Scholar 

  8. Schwarzer D, Finking R, Marahiel MA (2003) Nonribosomal peptides: from genes to products. Nat Prod Rep 20:275–287

    Article  CAS  PubMed  Google Scholar 

  9. Strieker M, Tanović A, Marahiel MA (2010) Nonribosomal peptide synthetases: structures and dynamics. Curr Opin Struct Biol 20: 234–240

    Article  CAS  PubMed  Google Scholar 

  10. Finking R, Marahiel MA (2004) Biosynthesis of nonribosomal peptides. Annu Rev Microbiol 58:453–488

    Article  CAS  PubMed  Google Scholar 

  11. Tillett D, Dittmann E, Erhard M, von Döhren H et al (2000) Structural organization of microcystin biosynthesis in Microcystis aeruginosa PCC7806: an integrated peptide-polyketide synthetase system. Chem Biol 7: 753–764

    Article  CAS  PubMed  Google Scholar 

  12. Dittmann E, Neilan BA, Börner T (2001) Molecular biology of peptide and polyketide biosynthesis in cyanobacteria. Appl Microbiol Biotechnol 57:467–473

    Article  CAS  PubMed  Google Scholar 

  13. Christiansen G, Fastner J, Erhard M, Börner T et al (2003) Microcystin biosynthesis in planktothrix: genes, evolution, and manipulation. J Bacteriol 185:564–572

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Caboche S, Pupin M, Leclère V et al (2008) NORINE: a database of nonribosomal peptides. Nucleic Acids Res 36:326–331

    Article  Google Scholar 

  15. Dreyfuss M, Härri E, Hofmann H et al (1976) Cyclosporin A and C: new metabolites from Trichoderma polysporum. Microbiology 133: 125–133

    Google Scholar 

  16. Von Wartburg A, Traber R (1988) Cyclosporins, fungal metabolites with immunosuppressive activities. Prog Med Chem 25: 1–33

    Google Scholar 

  17. McCormick MH, Stark WM, Pittenger GE et al (1956) Vancomycin, a new antibiotic. I. Chemical and biologic properties. Antibiot Annu 3:606–611

    CAS  Google Scholar 

  18. Nagarajan R (1991) Antibacterial activities and modes of action of vancomycin and related glycopeptides. Antimicrob Agents Chemother 35:605–609

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Rohr J (2006) Cryptophycin anticancer drugs revisited. ACS Chem Biol 1:747–750

    Article  CAS  PubMed  Google Scholar 

  20. Rusconi F (2009) massXpert 2: a cross-platform software environment for polymer chemistry modelling and simulation/analysis of mass spectrometric data. Bioinformatics 25:2741–2742

    Article  CAS  PubMed  Google Scholar 

  21. Jagannath S, Sabareesh V (2007) Peptide Fragment Ion Analyser (PFIA): a simple and versatile tool for the interpretation of tandem mass spectrometric data and de novo sequencing of peptides. Rapid Commun Mass Spectrom 21:3033–3038

    Article  CAS  PubMed  Google Scholar 

  22. Liu W, Ng J, Meluzzi D, Bandeira N et al (2009) The interpretation of tandem mass spectra obtained from cyclic non-ribosomal peptides. Anal Chem 81:4200–4209

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Niedermeyer THJ, Strohalm M (2012) mMass as a software tool for the annotation of cyclic peptide tandem mass spectra. PLoS One 7:e44913

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The author thanks R. Pozzi, T. Schafhauser and M. Strohalm for critically reading the manuscript and suggesting improvements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timo Horst Johannes Niedermeyer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Niedermeyer, T.H.J. (2016). Annotating and Interpreting Linear and Cyclic Peptide Tandem Mass Spectra. In: Evans, B. (eds) Nonribosomal Peptide and Polyketide Biosynthesis. Methods in Molecular Biology, vol 1401. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3375-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3375-4_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3373-0

  • Online ISBN: 978-1-4939-3375-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics