Skip to main content

Interpretation of Tandem Mass Spectrometry (MSMS) Spectra for Peptide Analysis

  • Protocol
Peptide Antibodies

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1348))

Abstract

The aim of this chapter is to give a short introduction to peptide analysis by mass spectrometry (MS) and interpretation of fragment mass spectra. Through examples and guidelines we demonstrate how to understand and validate search results and how to perform de novo sequencing based on the often very complex fragmentation pattern obtained by tandem mass spectrometry (also referred to as MSMS). The focus is on simple rules for interpretation of MSMS spectra of tryptic as well as non-tryptic peptides.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Edwards NJ (2011) Protein identification from tandem mass spectra by database searching. Methods Mol Biol 694:119–38

    Article  CAS  PubMed  Google Scholar 

  2. Zhang H, Cui W, Gross ML (2014) Mass spectrometry for the biophysical characterization of therapeutic monoclonal antibodies. FEBS Lett 588:308–17

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Mann M, Højrup P, Roepstorff P (1993) Use of mass spectrometric information to identify proteins in sequence databases. Biomed Environ Mass Spectrom 22:338–345

    Article  CAS  Google Scholar 

  4. Pappin DJC, Højrup P, Bleasby AJ (1993) Rapid identification of proteins by peptide-mass fingerprinting. Curr Biol 3:327–332

    Article  CAS  PubMed  Google Scholar 

  5. Craig R, Cortens JP, Beavis RC (2005) The use of proteotypic peptide libraries for protein identification. Rapid Commun Mass Spectrom 19:1844–1850

    Article  CAS  PubMed  Google Scholar 

  6. Switzar L, Giera M, Niessen WM (2013) Protein digestion, an overview of the available techniques and recent developments. J Proteome Res 12:1067–77

    Article  CAS  PubMed  Google Scholar 

  7. Højrup P (2009) Peptide mapping for protein characterization. In: Walker JM (ed) The protein protocols Handbook’. Humana Press, Totowa, NJ, pp 969–988

    Chapter  Google Scholar 

  8. Whitehouse CM, Dreyer RN, Yamashita M, Fenn JB (1985) Electrospray interface for liquid chromatographs and mass spectrometers. Anal Chem 57:675–9

    Article  CAS  PubMed  Google Scholar 

  9. Karas M, Hillenkamp F (1988) Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal Chem 60:2299–301

    Article  CAS  PubMed  Google Scholar 

  10. Roepstorff P, Fohlman J (1984) Proposal for a common nomenclature for sequence ions in mass spectra of peptides. Biomed Mass Spectrom 11:601

    Article  CAS  PubMed  Google Scholar 

  11. Paizs B, Suhai S (2005) Fragmentation pathways of protonated peptides. Mass Spectrom Rev 24:508–48

    Article  CAS  PubMed  Google Scholar 

  12. Zhang J, Xin L, Shan B, Chen W, Xie M, Yuen D, Zhang W, Zhang Z, Lajoie GA, Ma B (2012) PEAKS DB: de novo sequencing assisted database search for sensitive and accurate peptide identification. Mol Cell Proteomics 11:M111.010587

    Article  PubMed Central  PubMed  Google Scholar 

  13. Degroeve S, Martens L (2013) MS2PIP, a tool for MS/MS peak intensity prediction. Bioinformatics 29:3199–203

    Article  CAS  PubMed  Google Scholar 

  14. Schwartz BL, Bursey MM (1992) Some proline substituent effects in the tandem mass spectrum of protonated pentaalanine. Biol Mass Spectrom 21:92–6

    Article  CAS  PubMed  Google Scholar 

  15. Kapp EA, Schütz F, Reid GE, Eddes JS, Moritz RL, O'Hair RA, Speed TP, Simpson RJ (2003) Mining a tandem mass spectrometry database to determine the trends and global factors influencing peptide fragmentation. Anal Chem 75:6251–64

    Article  CAS  PubMed  Google Scholar 

  16. Larsen MR, Trelle MB, Thingholm TE, Jensen ON (2006) Analysis of posttranslational modifications of proteins by tandem mass spectrometry. Biotechniques 40:790–8

    Article  CAS  PubMed  Google Scholar 

  17. Lagerwerf FM, van de Weert M, Heerma W, Haverkamp J (1996) Identification of oxidized methionine in peptides. Rapid Commun Mass Spectrom 10:1905–10

    Article  CAS  PubMed  Google Scholar 

  18. Bunkenborg J, Matthiesen R (2013) Interpretation of tandem mass spectra of posttranslationally modified peptides. Methods Mol Biol 1007:139–71

    Article  CAS  PubMed  Google Scholar 

  19. Fornelli L, Ayoub D, Aizikov K, Beck A, Tsybin YO (2014) Middle-down analysis of monoclonal antibodies with electron transfer dissociation orbitrap fourier transform mass spectrometry. Anal Chem 86:3005–3012

    Article  CAS  PubMed  Google Scholar 

  20. Liu X, Dekker LJ, Wu S, Vanduijn MM, Luider TM, Tolić N, Kou Q, Dvorkin M, Alexandrova S, Vyatkina K, Paša-Tolić L, Pevzner PA (2014) De novo protein sequencing by combining top-down and bottom-up tandem mass spectra. J Proteome Res 13:3241–3248

    Article  CAS  PubMed  Google Scholar 

  21. Johnson RS, Martin SA, Biemann K (1988) Collision-induced fragmentation of (M + H)+ ions of peptides. Side chain specific sequence ions. Int J Mass Spectrom Ion Processes 86(29 D):137–154

    Article  CAS  Google Scholar 

  22. Allmer J (2011) Algorithms for the de novo sequencing of peptides from tandem mass spectra. Expert Rev Proteomics 8:645–57

    Article  PubMed  Google Scholar 

  23. Takao T, Gonzalez J, Yoshidome K, Sato K, Asada T, Kammei Y, Shimonishi Y (1993) Automatic precursor-Ion switching in a 4-sector tandem mass-spectrometer and its application to acquisition of the MS/MS product ions derived from a partially O-18-labeled peptide for their facile assignments. Anal Chem 65:2394–2399

    Article  CAS  PubMed  Google Scholar 

  24. Hennrich ML, Mohammed S, Altelaar AFM, Heck AJR (2010) Dimethyl isotope labeling assisted de novo peptide sequencing. J Am Soc Mass Spectrom 21:1957–1965

    Article  CAS  PubMed  Google Scholar 

  25. Shevchenko A, Sunyaev S, Loboda A, Shevchenko A, Bork P, Ens W, Standing KG (2001) Charting the proteomes of organisms with unsequenced genomes by MALDI-quadrupole time-of-flight mass spectrometry and BLAST homology searching. Anal Chem 73:1917–26

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Anne-Katrine Vestergaard is acknowledged for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Højrup .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Hjernø, K., Højrup, P. (2015). Interpretation of Tandem Mass Spectrometry (MSMS) Spectra for Peptide Analysis. In: Houen, G. (eds) Peptide Antibodies. Methods in Molecular Biology, vol 1348. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2999-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2999-3_10

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2998-6

  • Online ISBN: 978-1-4939-2999-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics