Skip to main content

Variable Digestion Strategies for Phosphoproteomics Analysis

  • Protocol
Phospho-Proteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1355))

Abstract

In recent years, mass spectrometry-based phosphoproteomics has propelled our knowledge about the regulation of cellular pathways. Nevertheless, typically applied bottom-up strategies have several limitations. Trypsin, the preferentially used proteolytic enzyme shows impaired cleavage efficiency in the vicinity of phosphorylation sites. Moreover, depending on the frequency and distribution of tryptic cleavage sites (Arg/Lys), generated peptides can be either too short or too long for confident identification using standard LC-MS approaches. To overcome these limitations, we introduce an alternative and simple approach based on the usage of the nonspecific serine protease subtilisin, which enables a fast and reproducible digestion and provides access to “hidden” areas of the proteome. Thus, in a single LC-MS experiment >1800 phosphopeptides were confidently identified and localized from 125 μg of HeLa digest, compared to >2100 sites after tryptic digestion. While the overlap was less than 20 %, subtilisin allowed the identification of many phosphorylation sites that are theoretically not accessible via tryptic digestion, thus considerably increasing the coverage of the phosphoproteome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Loroch S et al (2013) Phosphoproteomics—More than meets the eye. Electrophoresis 34(11):1483–1492

    Article  CAS  PubMed  Google Scholar 

  2. Mann M et al (2002) Analysis of protein phosphorylation using mass spectrometry: deciphering the phosphoproteome. Trends Biotechnol 20(6):261–268

    Article  CAS  PubMed  Google Scholar 

  3. Yan JX et al (1998) Protein phosphorylation: technologies for the identification of phosphoamino acids. J Chromatogr A 808(1–2):23–41

    Article  CAS  PubMed  Google Scholar 

  4. Sickmann A, Meyer HE (2001) Phosphoamino acid analysis. Proteomics 1(2):200–206

    Article  CAS  PubMed  Google Scholar 

  5. Burkhart JM et al (2012) Systematic and quantitative comparison of digest efficiency and specificity reveals the impact of trypsin quality on MS-based proteomics. J Proteomics 75(4):1454–1462

    Article  CAS  PubMed  Google Scholar 

  6. Picotti P, Aebersold R, Domon B (2007) The Implications of Proteolytic Background for Shotgun Proteomics. Mol Cell Proteomics 6(9):1589–1598

    Article  CAS  PubMed  Google Scholar 

  7. Proc JL et al (2010) A Quantitative Study of the Effects of Chaotropic Agents, Surfactants, and Solvents on the Digestion Efficiency of Human Plasma Proteins by Trypsin. J Proteome Res 9(10):5422–5437

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Olsen JV, Ong S-E, Mann M (2004) Trypsin Cleaves Exclusively C-terminal to Arginine and Lysine Residues. Mol Cell Proteomics 3(6):608–614

    Article  CAS  PubMed  Google Scholar 

  9. Bunkenborg J, Espadas G, Molina H (2013) Cutting Edge Proteomics: Benchmarking of Six Commercial Trypsins. J Proteome Res 12(8):3631–3641

    Article  CAS  PubMed  Google Scholar 

  10. Vandermarliere E, Mueller M, Martens L (2013) Getting intimate with trypsin, the leading protease in proteomics. Mass Spectrom Rev 32(6):453–465

    CAS  PubMed  Google Scholar 

  11. Walmsley SJ et al (2013) Comprehensive Analysis of Protein Digestion Using Six Trypsins Reveals the Origin of Trypsin As a Significant Source of Variability in Proteomics. J Proteome Res 12(12):5666–5680

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Dickhut C et al (2014) Impact of Digestion Conditions on Phosphoproteomics. J Proteome Res 13(6):2761–2770

    Article  CAS  PubMed  Google Scholar 

  13. Hamady M et al (2005) Does protein structure influence trypsin miscleavage? Engineering in Medicine and Biology Magazine. IEEE 24(3):58–66

    Google Scholar 

  14. Gilmore J, Kettenbach A, Gerber S (2012) Increasing phosphoproteomic coverage through sequential digestion by complementary proteases. Anal Bioanal Chem 402(2):711–720

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Jacobs M et al (1985) Cloning, sequencing and expression of subtilisin Carlsberg from Bacillus licheniformis. Nucleic Acids Res 13(24):8913–8926

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Taus T et al (2011) Universal and Confident Phosphorylation Site Localization Using phosphoRS. J Proteome Res 10(12):5354–5362

    Article  CAS  PubMed  Google Scholar 

  17. Martens L, Vandekerckhove J, Gevaert K (2005) DBToolkit: processing protein databases for peptide-centric proteomics. Bioinformatics 21(17):3584–3585

    Article  CAS  PubMed  Google Scholar 

  18. Palmisano G et al (2012) A Novel Method for the Simultaneous Enrichment, Identification, and Quantification of Phosphopeptides and Sialylated Glycopeptides Applied to a Temporal Profile of Mouse Brain Development. Mol Cell Proteomics 11(11):1191–1202

    Article  PubMed Central  PubMed  Google Scholar 

  19. Micallef L, Rodgers P (2014) eulerape: drawing area-proportional 3-Venn diagrams using ellipses. PLoS One 9(7):e101717

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

The financial support by the Ministerium für Innovation, Wissenschaft und Forschung des Landes Nordrhein-Westfalen and by the CAPES Foundation is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to René P. Zahedi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Gonczarowska-Jorge, H., Dell’Aica, M., Dickhut, C., Zahedi, R.P. (2016). Variable Digestion Strategies for Phosphoproteomics Analysis. In: von Stechow, L. (eds) Phospho-Proteomics. Methods in Molecular Biology, vol 1355. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3049-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3049-4_15

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-3048-7

  • Online ISBN: 978-1-4939-3049-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics