Skip to main content

Advertisement

Log in

Increasing phosphoproteomic coverage through sequential digestion by complementary proteases

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Protein phosphorylation is a reversible post-translational modification known to regulate protein function, subcellular localization, complex formation, and protein degradation. Detailed phosphoproteomic information is critical to kinomic studies of signal transduction and for elucidation of cancer biomarkers, such as in non-small-cell lung adenocarcinoma, where phosphorylation is commonly dysregulated. However, the collection and analysis of phosphorylation data remains a difficult problem. The low concentrations of phosphopeptides in complex biological mixtures as well as challenges inherent in their chemical nature have limited phosphoproteomic characterization and some phosphorylation sites are inaccessible by traditional workflows. We developed a sequential digestion method using complementary proteases, Glu-C and trypsin, to increase phosphoproteomic coverage and supplement traditional approaches. The sequential digestion method is more productive than workflows utilizing only Glu-C and we evaluated the orthogonality of the sequential digestion method relative to replicate trypsin-based analyses. Finally, we demonstrate the ability of the sequential digestion method to access new regions of the phosphoproteome by comparison to existing public phosphoproteomic databases. Our approach increases coverage of the human lung cancer phosphoproteome by accessing both new phosphoproteins and novel phosphorylation site information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Nita-Lazar A, Saito-Benz H, White FM (2008) Quantitative phosphoproteomics by mass spectrometry: past, present, and future. Proteomics 8(21):4433–4443

    Article  CAS  Google Scholar 

  2. Davies H, Hunter C, Smith R, Stephens P, Greenman C, Bignell G, Teague J, Butler A, Edkins S, Stevens C, Parker A, O’Meara S, Avis T, Barthorpe S, Brackenbury L, Buck G, Clements J, Cole J, Dicks E, Edwards K, Forbes S, Gorton M, Gray K, Halliday K, Harrison R, Hills K, Hinton J, Jones D, Kosmidou V, Laman R, Lugg R, Menzies A, Perry J, Petty R, Raine K, Shepherd R, Small A, Solomon H, Stephens Y, Tofts C, Varian J, Webb A, West S, Widaa S, Yates A, Brasseur F, Cooper CS, Flanagan AM, Green A, Knowles M, Leung SY, Looijenga LH, Malkowicz B, Pierotti MA, Teh BT, Yuen ST, Lakhani SR, Easton DF, Weber BL, Goldstraw P, Nicholson AG, Wooster R, Stratton MR, Futreal PA (2005) Somatic mutations of the protein kinase gene family in human lung cancer. Cancer Res 65(17):7591–7595

    CAS  Google Scholar 

  3. Greenman C, Stephens P, Smith R, Dalgliesh GL, Hunter C, Bignell G, Davies H, Teague J, Butler A, Stevens C, Edkins S, O’Meara S, Vastrik I, Schmidt EE, Avis T, Barthorpe S, Bhamra G, Buck G, Choudhury B, Clements J, Cole J, Dicks E, Forbes S, Gray K, Halliday K, Harrison R, Hills K, Hinton J, Jenkinson A, Jones D, Menzies A, Mironenko T, Perry J, Raine K, Richardson D, Shepherd R, Small A, Tofts C, Varian J, Webb T, West S, Widaa S, Yates A, Cahill DP, Louis DN, Goldstraw P, Nicholson AG, Brasseur F, Looijenga L, Weber BL, Chiew YE, DeFazio A, Greaves MF, Green AR, Campbell P, Birney E, Easton DF, Chenevix-Trench G, Tan MH, Khoo SK, Teh BT, Yuen ST, Leung SY, Wooster R, Futreal PA, Stratton MR (2007) Patterns of somatic mutation in human cancer genomes. Nature 446(7132):153–158

    Article  CAS  Google Scholar 

  4. Grimsrud PA, Swaney DL, Wenger CD, Beauchene NA, Coon JJ (2010) Phosphoproteomics for the masses. ACS Chem Biol 5(1):105–119

    Article  CAS  Google Scholar 

  5. Villen J, Beausoleil SA, Gerber SA, Gygi SP (2007) Large-scale phosphorylation analysis of mouse liver. Proc Natl Acad Sci U S A 104(5):1488–1493

    Article  CAS  Google Scholar 

  6. Villen J, Gygi SP (2008) The SCX/IMAC enrichment approach for global phosphorylation analysis by mass spectrometry. Nat Protoc 3(10):1630–1638

    Article  Google Scholar 

  7. Larsen MR, Thingholm TE, Jensen ON, Roepstorff P, Jorgensen TJ (2005) Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns. Mol Cell Proteomics 4(7):873–886

    Article  CAS  Google Scholar 

  8. Pinkse MWH, Uitto PM, Hilhorst MJ, Ooms B, Heck AJR (2004) Selective isolation at the femtomole level of phosphopeptides from proteolytic digests using 2D-nanoLC-ESI-MS/MS and titanium oxide precolumns. Anal Chem 76(14):3935–3943

    Article  CAS  Google Scholar 

  9. Sugiyama N, Masuda T, Shinoda K, Nakamura A, Tomita M, Ishihama Y (2007) Phosphopeptide enrichment by aliphatic hydroxy acid-modified metal oxide chromatography for nano-LC-MS/MS in proteomics applications. Mol Cell Proteomics 6(6):1103–1109

    Article  CAS  Google Scholar 

  10. Eng JK, Mccormack AL, Yates JR (1994) An approach to correlate tandem mass-spectral data of peptides with amino-acid-sequences in a protein database. Journal of the American Society for Mass Spectrometry 5(11):976–989

    Article  CAS  Google Scholar 

  11. Faherty BK, Gerber SA (2010) MacroSEQUEST: efficient candidate-centric searching and high-resolution correlation analysis for large-scale proteomics data sets. Anal Chem 82(16):6821–6829. doi:10.1021/ac100783x

    Article  CAS  Google Scholar 

  12. Dephoure N, Zhou C, Villen J, Beausoleil SA, Bakalarski CE, Elledge SJ, Gygi SP (2008) A quantitative atlas of mitotic phosphorylation. Proc Natl Acad Sci U S A 105(31):10762–10767

    Article  CAS  Google Scholar 

  13. Grimsrud PA, den Os D, Wenger CD, Swaney DL, Schwartz D, Sussman MR, Ane JM, Coon JJ (2010) Large-scale phosphoprotein analysis in Medicago truncatula roots provides insight into in vivo kinase activity in legumes. Plant Physiol 152(1):19–28

    Article  CAS  Google Scholar 

  14. Olsen JV, Vermeulen M, Santamaria A, Kumar C, Miller ML, Jensen LJ, Gnad F, Cox J, Jensen TS, Nigg EA, Brunak S, Mann M (2010) Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci Signal 3 (104):ra3

    Google Scholar 

  15. Washburn MP, Wolters D, Yates JR 3rd (2001) Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol 19(3):242–247

    Article  CAS  Google Scholar 

  16. Beausoleil SA, Jedrychowski M, Schwartz D, Elias JE, Villen J, Li J, Cohn MA, Cantley LC, Gygi SP (2004) Large-scale characterization of HeLa cell nuclear phosphoproteins. Proc Natl Acad Sci U S A 101(33):12130–12135

    Article  CAS  Google Scholar 

  17. Gauci S, Helbig AO, Slijper M, Krijgsveld J, Heck AJ, Mohammed S (2009) Lys-N and trypsin cover complementary parts of the phosphoproteome in a refined SCX-based approach. Anal Chem 81(11):4493–4501

    Article  CAS  Google Scholar 

  18. Taouatas N, Altelaar AF, Drugan MM, Helbig AO, Mohammed S, Heck AJ (2009) Strong cation exchange-based fractionation of Lys-N-generated peptides facilitates the targeted analysis of post-translational modifications. Mol Cell Proteomics 8(1):190–200

    Article  CAS  Google Scholar 

  19. Chen R, Jiang X, Sun D, Han G, Wang F, Ye M, Wang L, Zou H (2009) Glycoproteomics analysis of human liver tissue by combination of multiple enzyme digestion and hydrazide chemistry. J Proteome Res 8(2):651–661

    Article  CAS  Google Scholar 

  20. Schlosser A, Vanselow JT, Kramer A (2005) Mapping of phosphorylation sites by a multi-protease approach with specific phosphopeptide enrichment and NanoLC-MS/MS analysis. Anal Chem 77(16):5243–5250

    Article  CAS  Google Scholar 

  21. Choudhary G, Wu SL, Shieh P, Hancock WS (2003) Multiple enzymatic digestion for enhanced sequence coverage of proteins in complex proteomic mixtures using capillary LC with ion trap MS/MS. J Proteome Res 2(1):59–67

    Article  CAS  Google Scholar 

  22. Biringer RG, Amato H, Harrington MG, Fonteh AN, Riggins JN, Huhmer AF (2006) Enhanced sequence coverage of proteins in human cerebrospinal fluid using multiple enzymatic digestion and linear ion trap LC-MS/MS. Brief Funct Genomic Proteomic 5(2):144–153

    Article  CAS  Google Scholar 

  23. Kettenbach AN, Gerber SA (2011) Rapid and reproducible single-stage phosphopeptide enrichment of complex peptide mixtures: application to general and phosphotyrosine-specific phosphoproteomics experiments. Anal Chem. in press.

  24. Xie R, Oleschuk R (2007) Photoinduced polymerization for entrapping of octadecylsilane microsphere columns for capillary electrochromatography. Anal Chem 79(4):1529–1535

    Article  CAS  Google Scholar 

  25. Olsen JV, de Godoy LM, Li G, Macek B, Mortensen P, Pesch R, Makarov A, Lange O, Horning S, Mann M (2005) Parts per million mass accuracy on an Orbitrap mass spectrometer via lock mass injection into a C-trap. Mol Cell Proteomics 4(12):2010–2021

    Article  CAS  Google Scholar 

  26. Villen J, Beausoleil SA, Gygi SP (2008) Evaluation of the utility of neutral-loss-dependent MS3 strategies in large-scale phosphorylation analysis. Proteomics 8(21):4444–4452

    Article  CAS  Google Scholar 

  27. Elias JE, Gygi SP (2007) Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat Methods 4(3):207–214

    Article  CAS  Google Scholar 

  28. Hoopmann MR, Finney GL, MacCoss MJ (2007) High-speed data reduction, feature detection, and MS/MS spectrum quality assessment of shotgun proteomics data sets using high-resolution mass spectrometry. Anal Chem 79(15):5620–5632

    Article  CAS  Google Scholar 

  29. Hornbeck PV, Chabra I, Kornhauser JM, Skrzypek E, Zhang B (2004) PhosphoSite: a bioinformatics resource dedicated to physiological protein phosphorylation. Proteomics 4(6):1551–1561

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge funding from the American Cancer Society (IRG-82-003-24) and the National Institutes of Health (P20-RR018787) for the IDeA Program of the National Center for Research Resources (to S.A.G.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott A. Gerber.

Electronic Supplementary Materials

Below is the link to the electronic supplementary material.

ESM 1

(PDF 11443 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gilmore, J.M., Kettenbach, A.N. & Gerber, S.A. Increasing phosphoproteomic coverage through sequential digestion by complementary proteases. Anal Bioanal Chem 402, 711–720 (2012). https://doi.org/10.1007/s00216-011-5466-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-5466-5

Keywords

Navigation