Skip to main content

Aptamer Targeting the ERBB2 Receptor Tyrosine Kinase for Applications in Tumor Therapy

  • Protocol
Gene Therapy of Solid Cancers

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1317))

Abstract

Aptamers are an emerging class of molecules in cancer therapy. They can be easily synthesized and are considered cost-effective drug candidates. In this book chapter we describe the selection and characterization of DNA aptamers specific to the human epidermal growth factor receptor 2 (ERBB2/HER2), an oncogenic tyrosine kinase. First, a DNA aptamer library is applied and ERBB2-specific aptamers are selected using SELEX. Binders are subcloned into a pGEM-T vector, sequenced, and characterized using biochemical and cell biological techniques. By multimerizing the selected ERBB2 aptamers, it might be possible to significantly increase their avidity. For example, we could show that a trimeric ERBB2-specific aptamer could efficiently internalize membranal ERBB2. Furthermore, the receptor assembled in cytoplasmic puncta and was finally degraded by the lysosome. In addition, the selected, trimeric aptamer inhibited proliferation in an XTT assay in comparison to a control sequence. Aptamers selected using the protocol we describe might exert anticancer effect. In our example of a trimeric anti-HER2 aptamer, we could report that a human gastric xenograft mouse model demonstrated pharmacological value of the selected aptamer in vivo. This chapter should enable the interested reader to replicate selection of DNA aptamers specific to oncogenic cell surface. We would like to particularly emphasize some experimental approaches which were used to further characterize selected aptamer sequences, upon SELEX selection. For instance, we included several blotting techniques, antiproliferative assays of aptamers in vitro, and describe the handling of an in vivo human xenograft mouse model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Köhler G, Milstein C (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256(5517):495–497

    Article  PubMed  Google Scholar 

  2. Ben-Kasus T, Schechter B, Sela M, Yarden Y (2007) Cancer therapeutic antibodies come of age: targeting minimal residual disease. Mol Oncol 1(1):42–54

    Article  CAS  PubMed  Google Scholar 

  3. Mahlknecht G, Maron R, Mancini M, Schechter B, Sela M, Yarden Y (2013) Aptamer to ErbB-2/HER2 enhances degradation of the target and inhibits tumorigenic growth. Proc Natl Acad Sci U S A 110(20):8170–8175

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Stoltenburg R, Reinemann C, Strehlitz B (2007) SELEX- (r)evolutionary method to generate high-affinity nucleic acid ligands. Biomol Eng 24:381–403

    Article  CAS  PubMed  Google Scholar 

  5. Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822

    Article  CAS  PubMed  Google Scholar 

  6. Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–515

    Article  CAS  PubMed  Google Scholar 

  7. Tombelli S, Minunni M, Mascini M (2005) Analytical applications of aptamers. Biosens Bioelectron 20:2424–2434

    Article  CAS  PubMed  Google Scholar 

  8. Hermann T, Patel DJ (2000) Adaptive recognition by nucleic acid aptamers. Biochemistry 287:820–825

    CAS  Google Scholar 

  9. Guo KT, Paul A, Schichor C, Ziemer G, Wendel HP (2008) CELL-SELEX: novel perspectives of aptamer-based therapeutics. Int J Mol Sci 9:668–678

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Citri A, Yarden Y (2006) EGF-ERBB signalling: towards the systems level. Nat Rev Mol Cell Biol 7:505–516

    Article  CAS  PubMed  Google Scholar 

  11. Rowinsky EK (2004) The ErbB Family: targets for therapeutic development against cancer and therapeutic Strategies using monoclonal antibodies and tyrosine kinase inhibitors. Annu Rev Med 55:433–457

    Article  CAS  PubMed  Google Scholar 

  12. Chen CH, Chernis GA, Hoang VQ, Landgraf R (2003) Inhibition of heregulin signaling by an aptamer that preferentially binds to the oligomeric form of human epidermal growth factor receptor-3. Proc Natl Acad Sci USA 105:15908–15913

    Article  Google Scholar 

  13. Dastjerdi K, Tabar GH, Dehghani H, Haghparast A (2011) Generation of an enriched pool of DNA aptamers for a HER2-overexpressing cell line selected by Cell-SELEX. Biotechnol Appl Biochem 58(4):226–230

    Article  CAS  PubMed  Google Scholar 

  14. Esposito CL, Passaro D, Longobardo I, Condorelli G, Marotta P, Affuso A, De Franciscis V, Cerchia L (2011) A neutralizing RNA aptamer against EGFR causes selective apoptotic cell death. PLoS One 6(9):e24071

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Kang HS, Huh YM, Kim S, Lee D (2009) Isolation of RNA aptamers targeting HER-2-overexpressing breast cancer cells using Cell-SELEX. Bull Korean Chem Soc 30(8):1827–1831

    Article  CAS  Google Scholar 

  16. Kim MY, Jeong S (2011) In vitro Selection of RNA aptamer and specific targeting of ErbB2 in breast cancer cells. Nucleic Acid Ther 21(3):173–178

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Li N, Nguyen HH, Byrom M, Ellington AD (2011) Inhibition of cell proliferation by an anti-EGFR aptamer. PLoS One 6(6):e20299

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Thiel KW, Hernandez LI, Dassie JP, Thiel WH, Liu X, Stockdale KR, Rothman AM, Hernandez FJ, McNamara JO 2nd, Giangrande PH (2012) Delivery of chemo-sensitizing siRNAs to HER2+− breast cancer cells using RNA aptamers. Nucleic Acids Res 40(13):6319–6337

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Missailidis S (2003) Targeting of antibodies using aptamers. In: Lo BKC (ed) Antibody engineering: methods and protocols, vol 51. Humana Press, New York, pp 547–555

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg Mahlknecht .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Mahlknecht, G., Sela, M., Yarden, Y. (2015). Aptamer Targeting the ERBB2 Receptor Tyrosine Kinase for Applications in Tumor Therapy. In: Walther, W., Stein, U. (eds) Gene Therapy of Solid Cancers. Methods in Molecular Biology, vol 1317. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2727-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2727-2_1

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2726-5

  • Online ISBN: 978-1-4939-2727-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics