Skip to main content

Whole-Genome Sequencing for Comparative Genomics and De Novo Genome Assembly

  • Protocol
  • First Online:
Mycobacteria Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1285))

Abstract

Next-generation sequencing technologies for whole-genome sequencing of mycobacteria are rapidly becoming an attractive alternative to more traditional sequencing methods. In particular this technology is proving useful for genome-wide identification of mutations in mycobacteria (comparative genomics) as well as for de novo assembly of whole genomes. Next-generation sequencing however generates a vast quantity of data that can only be transformed into a usable and comprehensible form using bioinformatics. Here we describe the methodology one would use to prepare libraries for whole-genome sequencing, and the basic bioinformatics to identify mutations in a genome following Illumina HiSeq or MiSeq sequencing, as well as de novo genome assembly following sequencing using Pacific Biosciences (PacBio).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Koul A, Dendouga N, Vergauwen K et al (2007) Diarylquinolines target subunit c of mycobacterial ATP synthase. Nat Chem Biol 3:323–324. doi:10.1038/nchembio884

    Article  CAS  PubMed  Google Scholar 

  2. Hartkoorn RC, Sala C, Neres J et al (2012) Towards a new tuberculosis drug: pyridomycin—nature’s isoniazid. EMBO Mol Med 4:1032–1042. doi:10.1002/emmm.201201689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pethe K, Bifani P, Jang J et al (2013) Discovery of Q203, a potent clinical candidate for the treatment of tuberculosis. Nat Med 19:1157–1160. doi:10.1038/nm.3262

    Article  CAS  PubMed  Google Scholar 

  4. Brosch R, Pym AS, Gordon SV, Cole ST (2001) The evolution of mycobacterial pathogenicity: clues from comparative genomics. Trends Microbiol 9:452–458. doi:10.1016/S0966-842X(01)02131-X

    Article  CAS  PubMed  Google Scholar 

  5. Comas I, Chakravartti J, Small PM et al (2010) Human T cell epitopes of Mycobacterium tuberculosis are evolutionarily hyperconserved. Nat Genet 42:498–503. doi:10.1038/ng.590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Walker TM, Ip CL, Harrell RH et al (2013) Whole-genome sequencing to delineate Mycobacterium tuberculosis outbreaks: a retrospective observational study. Lancet Infect Dis 13:137–146. doi:10.1016/S1473-3099(12)70277-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kato-Maeda M, Ho C, Passarelli B et al (2013) Use of whole genome sequencing to determine the microevolution of Mycobacterium tuberculosis during an outbreak. PLoS One 8:e58235. doi:10.1371/journal.pone.0058235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Schuenemann VJ, Singh P, Mendum TA et al (2013) Genome-wide comparison of medieval and modern Mycobacterium leprae. Science 341:179–183. doi:10.1126/science.1238286

    Article  CAS  PubMed  Google Scholar 

  9. Ford CB, Lin PL, Chase MR et al (2011) Use of whole genome sequencing to estimate the mutation rate of Mycobacterium tuberculosis during latent infection. Nat Genet 43:482–486. doi:10.1038/ng.811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ford C, Yusim K, Ioerger T et al (2012) Mycobacterium tuberculosis—heterogeneity revealed through whole genome sequencing. Tuberculosis 92:194–201. doi:10.1016/j.tube.2011.11.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Supply P, Marceau M, Mangenot S et al (2013) Genomic analysis of smooth tubercle bacilli provides insights into ancestry and pathoadaptation of Mycobacterium tuberculosis. Nat Genet 45:172–179. doi:10.1038/ng.2517

    Article  CAS  PubMed  Google Scholar 

  12. Li L, Bannantine JP, Zhang Q et al (2005) The complete genome sequence of Mycobacterium avium subspecies paratuberculosis. Proc Natl Acad Sci U S A 102:12344–12349. doi:10.1073/pnas.0505662102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fleischmann RD, Alland D, Eisen JA et al (2002) Whole-genome comparison of Mycobacterium tuberculosis clinical and laboratory strains. J Bacteriol 184:5479–5490. doi:10.1128/JB.184.19.5479-5490.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ahn SJ, Costa J, Emanuel JR (1996) PicoGreen quantitation of DNA: effective evaluation of samples pre- or post-PCR. Nucleic Acids Res 24(13):2623–2625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pelicic V, Jackson M, Reyrat J-M et al (1997) Efficient allelic exchange and transposon mutagenesis in Mycobacterium tuberculosis. Proc Natl Acad Sci 94:10955–10960. doi:10.1073/pnas.94.20.10955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chevreux B, Wetter T, Suhai S (1999) Genome sequence assembly using trace signals and additional sequence information. Comput Sci Biol Proc Ger Conf Bioinforma GCB. pp 45–56

    Google Scholar 

  17. Pabinger S, Dander A, Fischer M et al (2013) A survey of tools for variant analysis of next-generation genome sequencing data. Brief Bioinform. doi:10.1093/bib/bbs086

    PubMed  PubMed Central  Google Scholar 

  18. Zhang W, Chen J, Yang Y et al (2011) A practical comparison of de novo genome assembly software tools for next-generation sequencing technologies. PLoS One 6:e17915. doi:10.1371/journal.pone.0017915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pavlopoulos GA, Oulas A, Iacucci E et al (2013) Unraveling genomic variation from next generation sequencing data. BioData Min 6:13. doi:10.1186/1756-0381-6-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruben C. Hartkoorn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Benjak, A., Sala, C., Hartkoorn, R.C. (2015). Whole-Genome Sequencing for Comparative Genomics and De Novo Genome Assembly. In: Parish, T., Roberts, D. (eds) Mycobacteria Protocols. Methods in Molecular Biology, vol 1285. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2450-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2450-9_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2449-3

  • Online ISBN: 978-1-4939-2450-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics