Skip to main content

Identifying Direct Notch Transcriptional Targets Using the GSI-Washout Assay

  • Protocol
  • First Online:
Notch Signaling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1187))

Abstract

Genetic gain- and loss-of-function studies have traditionally been used to study transcriptional networks regulated by the Notch signaling pathway; however these techniques lack the ability to resolve primary and secondary transcriptional events. In contrast, the γ-secretase inhibitor (GSI) washout assay takes advantage of the reversibility of GSI, a pharmacological inhibitor of Notch signaling, along with the ability of cycloheximide to prevent secondary transcriptional effects to identify direct Notch pathway targets. Here we review this technique and the technical considerations for adapting this assay to a cell type of choice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Iso T, Kedes L, Hamamori Y (2003) HES and HERP families: multiple effectors of the Notch signaling pathway. J Cell Physiol 194:237–255

    CAS  PubMed  Google Scholar 

  2. Leimeister C, Dale K, Fischer A et al (2000) Oscillating expression of c-Hey2 in the presomitic mesoderm suggests that the segmentation clock may use combinatorial signaling through multiple interacting bHLH factors. Dev Biol 227:91–103

    CAS  PubMed  Google Scholar 

  3. Leimeister C, Schumacher N, Steidl C et al (2000) Analysis of HeyL expression in wild-type and Notch pathway mutant mouse embryos. Mech Dev 98:175–178

    CAS  PubMed  Google Scholar 

  4. Leimeister C, Externbrink A, Klamt B et al (1999) Hey genes: a novel subfamily of hairy- and Enhancer of split related genes specifically expressed during mouse embryogenesis. Mech Dev 85:173–177

    CAS  PubMed  Google Scholar 

  5. Aster JC, Pear WS, Blacklow SC (2008) Notch signaling in leukemia. Annu Rev Pathol 3: 587–613

    CAS  PubMed  Google Scholar 

  6. Liu Z, Turkoz A, Jackson EN et al (2011) Notch1 loss of heterozygosity causes vascular tumors and lethal hemorrhage in mice. J Clin Invest 121:800–808

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Nicolas M, Wolfer A, Raj K et al (2003) Notch1 functions as a tumor suppressor in mouse skin. Nat Genet 33:416–421

    CAS  PubMed  Google Scholar 

  8. Sriuranpong V, Borges MW, Ravi RK et al (2001) Notch signaling induces cell cycle arrest in small cell lung cancer cells. Cancer Res 61:3200–3205

    CAS  PubMed  Google Scholar 

  9. Ikawa T, Kawamoto H, Goldrath AW et al (2006) E proteins and Notch signaling cooperate to promote T cell lineage specification and commitment. J Exp Med 203:1329–1342

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Lieber T, Kidd S, Alcamo E et al (1993) Antineurogenic phenotypes induced by truncated Notch proteins indicate a role in signal transduction and may point to a novel function for Notch in nuclei. Genes Dev 7:1949–1965

    Article  CAS  PubMed  Google Scholar 

  11. Gho M, Lecourtois M, Geraud G et al (1996) Subcellular localization of suppressor of hairless in drosophila sense organ cells during Notch signalling. Development 122:1673–1682

    CAS  PubMed  Google Scholar 

  12. Bailey AM, Posakony JW (1995) Suppressor of hairless directly activates transcription of enhancer of split complex genes in response to Notch receptor activity. Genes Dev 9:2609–2622

    Article  CAS  PubMed  Google Scholar 

  13. Heitzler P, Bourouis M, Ruel L et al (1996) Genes of the Enhancer of split and achaete-scute complexes are required for a regulatory loop between Notch and Delta during lateral signalling in Drosophila. Development 122:161–171

    CAS  PubMed  Google Scholar 

  14. Artavanis-Tsakonas S, Rand MD, Lake RJ (1999) Notch signaling: cell fate control and signal integration in development. Science 284:770–776

    Article  CAS  PubMed  Google Scholar 

  15. Wang H, Zou J, Zhao B et al (2011) Genome-wide analysis reveals conserved and divergent features of Notch1/RBPJ binding in human and murine T-lymphoblastic leukemia cells. Proc Natl Acad Sci U S A 108: 14908–14913

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Esler WP, Kimberly WT, Ostaszewski BL et al (2000) Transition-state analogue inhibitors of gamma-secretase bind directly to presenilin-1. Nat Cell Biol 2:428–434

    Article  CAS  PubMed  Google Scholar 

  17. Zhang Z, Nadeau P, Song W et al (2000) Presenilins are required for gamma-secretase cleavage of beta-APP and transmembrane cleavage of Notch-1. Nat Cell Biol 2: 463–465

    Article  CAS  PubMed  Google Scholar 

  18. De Strooper B, Annaert W, Cupers P et al (1999) A presenilin-1-dependent gamma-secretase-like protease mediates release of Notch intracellular domain. Nature 398:518–522

    Article  PubMed  Google Scholar 

  19. Tsai JY, Wolfe MS, Xia W (2002) The search for gamma-secretase and development of inhibitors. Curr Med Chem 9:1087–1106

    Article  CAS  PubMed  Google Scholar 

  20. De Strooper B, Vassar R, Golde T (2010) The secretases: enzymes with therapeutic potential in Alzheimer disease. Nat Rev Neurol 6: 99–107

    Article  PubMed Central  PubMed  Google Scholar 

  21. Hadland BK, Manley NR, Su D et al (2001) Gamma -secretase inhibitors repress thymocyte development. Proc Natl Acad Sci U S A 98:7487–7491

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Geling A, Steiner H, Willem M et al (2002) A gamma-secretase inhibitor blocks Notch signaling in vivo and causes a severe neurogenic phenotype in zebrafish. EMBO Rep 3: 688–694

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Kopan R, Ilagan MX (2009) The canonical Notch signaling pathway: unfolding the activation mechanism. Cell 137:216–233

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Gordon WR, Arnett KL, Blacklow SC (2008) The molecular logic of Notch signaling–a structural and biochemical perspective. J Cell Sci 121:3109–3119

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Weng AP, Ferrando AA, Lee W et al (2004) Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 306:269–271

    CAS  PubMed  Google Scholar 

  26. Aster JC, Blacklow SC, Pear WS (2011) Notch signalling in T-cell lymphoblastic leukaemia/lymphoma and other haematological malignancies. J Pathol 223:262–273

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Weng AP, Millholland JM, Yashiro-Ohtani Y et al (2006) c-Myc is an important direct target of Notch1 in T-cell acute lymphoblastic leukemia/lymphoma. Genes Dev 20:2096–2109

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Pear WS, Aster JC, Scott ML et al (1996) Exclusive development of T cell neoplasms in mice transplanted with bone marrow expressing activated Notch alleles. J Exp Med 183: 2283–2291

    CAS  PubMed  Google Scholar 

  29. Bailis W, Yashiro-Ohtani Y, Fang TC et al (2013) Notch simultaneously orchestrates multiple helper T cell programs independently of cytokine signals. Immunity 39: 148–159

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Warren S. Pear .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Bailis, W., Yashiro-Ohtani, Y., Pear, W.S. (2014). Identifying Direct Notch Transcriptional Targets Using the GSI-Washout Assay. In: Bellen, H., Yamamoto, S. (eds) Notch Signaling. Methods in Molecular Biology, vol 1187. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1139-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1139-4_19

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1138-7

  • Online ISBN: 978-1-4939-1139-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics