Skip to main content

Simulating Microbial Community Patterning Using Biocellion

  • Protocol
  • First Online:
Engineering and Analyzing Multicellular Systems

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1151))

Abstract

Mathematical modeling and computer simulation are important tools for understanding complex interactions between cells and their biotic and abiotic environment: similarities and differences between modeled and observed behavior provide the basis for hypothesis formation. Momeni et al. (Elife 2:e00230, 2013) investigated pattern formation in communities of yeast strains engaging in different types of ecological interactions, comparing the predictions of mathematical modeling, and simulation to actual patterns observed in wet-lab experiments. However, simulations of millions of cells in a three-dimensional community are extremely time consuming. One simulation run in MATLAB may take a week or longer, inhibiting exploration of the vast space of parameter combinations and assumptions. Improving the speed, scale, and accuracy of such simulations facilitates hypothesis formation and expedites discovery. Biocellion is a high-performance software framework for accelerating discrete agent-based simulation of biological systems with millions to trillions of cells. Simulations of comparable scale and accuracy to those taking a week of computer time using MATLAB require just hours using Biocellion on a multicore workstation. Biocellion further accelerates large scale, high resolution simulations using cluster computers by partitioning the work to run on multiple compute nodes. Biocellion targets computational biologists who have mathematical modeling backgrounds and basic C++ programming skills. This chapter describes the necessary steps to adapt the original Momeni et al.’s model to the Biocellion framework as a case study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Byrne H, Drasdo D (2009) Individual-based and continuum models of growing cell populations: a comparison. J Math Biol 58(4–5):657–687

    Article  Google Scholar 

  2. Colella P, Graves DT, Johnson JN, Johansen HS, Keen ND, Ligocki TJ, Martin DF, McCorquodale PW, Modiano D, Schwartz PO, Sternberg TD, Van Straalen B (2012) Chombo software package for AMR applications design document. Lawrence Berkeley National Laboratory, Berkeley, CA

    Google Scholar 

  3. Ferrer J, Prats C, López D (2008) Individual-based modelling: an essential tool for microbiology. J Biol Phys 34(1–2):19–37

    Article  Google Scholar 

  4. Galle J, Loeffler M, Drasdo D (2005) Modeling the effect of deregulated proliferation and apoptosis on the growth dynamics of epithelial cell populations in vitro. Biophys J 88:62–75

    Article  CAS  Google Scholar 

  5. Momeni B, Brileya KA, Fields MW, Shou W (2013) Strong inter-population cooperation leads to partner intermixing in microbial communities. Elife 2:e00230

    Article  Google Scholar 

  6. Pacific Northwest National Laboratory (2013) Biocellion 1.0 User Manual, 1.0 edition, Accessed Jul 2013

    Google Scholar 

  7. Xavier JB, Picioreanu C, van Loosdrecht MCM (2005) A framework for multidimensional modelling of activity and structure of multispecies biofilms. Environ Microbiol 7(8):1085–1103

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Support for this research was provided by the Extreme Scale Computing Initiative and the Fundamental and Computational Sciences Directorate, as part of the Laboratory Directed Research and Development Program at Pacific Northwest National Laboratory (PNNL). Portions of this work were conducted using PNNL Institutional Computing at PNNL. PNNL is operated by Battelle for DOE under contract DE-ACO5-76RLO 1830. B.M. is a Gordon and Betty Moore Foundation fellow of the Life Sciences Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seunghwa Kang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Kang, S., Kahan, S., Momeni, B. (2014). Simulating Microbial Community Patterning Using Biocellion . In: Sun, L., Shou, W. (eds) Engineering and Analyzing Multicellular Systems. Methods in Molecular Biology, vol 1151. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0554-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0554-6_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0553-9

  • Online ISBN: 978-1-4939-0554-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics