Skip to main content

The Use of Cultured Drosophila Cells for Studying the Microtubule Cytoskeleton

  • Protocol
  • First Online:
Mitosis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1136))

Abstract

Cultured Drosophila cell lines have been developed into a powerful tool for studying a wide variety of cellular processes. Their ability to be easily and cheaply cultured as well as their susceptibility to protein knockdown via double-stranded RNA-mediated interference (RNAi) has made them the model system of choice for many researchers in the fields of cell biology and functional genomics. Here we describe basic techniques for gene knockdown, transgene expression, preparation for fluorescence microscopy, and centrosome enrichment using cultured Drosophila cells with an emphasis on studying the microtubule cytoskeleton.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rogers SL, Rogers GC, Sharp DJ, Vale RD (2002) Drosophila EB1 is important for proper assembly, dynamics, and positioning of the mitotic spindle. J Cell Biol 158(5):873–884

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Ulvila J, Parikka M, Kleino A, Sormunen R, Esekowitz RA, Kocks C, Rämet M (2006) Double-stranded RNA is internalized by scavenger receptor-mediated endocytosis in Drosophila S2 cells. J Biol Chem 281:14370–14375

    Article  CAS  PubMed  Google Scholar 

  3. Dobbelaere J, Josué F, Suijkerbuijk S, Baum B, Tapon N, Raff J (2008) A genome-wide RNAi screen to dissect centriole duplication and centrosome maturation in Drosophila. PLoS Biol 6(9):e224

    Article  PubMed Central  PubMed  Google Scholar 

  4. Goshima G, Wollman R, Goodwin SS, Zhang N, Scholey JM, Vale RD, Stuurman N (2007) Genes required for mitotic spindle assembly in Drosophila S2 cells. Science 316:417–421

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Kwon M, Godinho SA, Chandhok NS, Ganem NJ, Azioune A, Thery M, Pellman D (2008) Mechanisms to suppress multipolar divisions in cancer cells with extra centrosomes. Genes Dev 22:2189–2203

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Rusan NM, Rogers GC (2009) Centrosome function: sometimes less is more. Traffic 10:472–481

    Article  CAS  PubMed  Google Scholar 

  7. Rogers GC, Rusan NM, Peifer M, Rogers SL (2008) A multicomponent assembly pathway contributes to the formation of acentrosomal microtubule arrays in interphase Drosophila cells. Mol Biol Cell 19:3163–3178

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Wadsworth P, Khodjakov A (2004) E pluribus unum: towards a universal mechanism for spindle assembly. Trends Cell Biol 14: 413–419

    Article  CAS  PubMed  Google Scholar 

  9. Rusan RM, Peifer M (2007) A role for a novel centrosome cycle in asymmetric cell division. J Cell Biol 177:13–20

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Goshima G, Vale RD (2003) The roles of microtubule-based motor proteins in mitosis: comprehensive RNAi analysis in the Drosophila S2 cell line. J Cell Biol 162:1003–1016

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Rogers GC, Rusan NM, Roberts DM, Peifer M, Rogers SL (2009) The SCF Slimb ubiquitin ligase regulates Plk4/Sak levels to block centriole reduplication. J Cell Biol 184(2): 225–239

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Currie JD, Rogers SL (2011) Using the Drosophila melanogaster D17-c3 cell culture system to study cell motility. Nat Protoc 6: 1632–1641

    Article  CAS  PubMed  Google Scholar 

  13. Ui K, Nishihara S, Sakuma M, Togashi S, Ueda R, Miyata Y, Miyake T (1994) Newly established cell lines from Drosophila larval CNS express neural specific characteristics. In Vitro Cell Dev Biol Anim 30A:209–216

    Article  CAS  PubMed  Google Scholar 

  14. Schneider I (1972) Cell lines derived from late embryonic stages of Drosophila melanogaster. J Embryol Exp Morphol 27:353–365

    CAS  PubMed  Google Scholar 

  15. Yanagawa S, Lee JS, Ishimoto A (1998) Identification and characterization of a novel line of Drosophila Schneider S2 cells that respond to wingless signaling. J Biol Chem 273:32353–32359

    Article  CAS  PubMed  Google Scholar 

  16. Echalier G, Ohanessian A (1970) In vitro culture of Drosophila melanogaster embryonic cells. In Vitro 6:162–172

    Article  CAS  PubMed  Google Scholar 

  17. Cherbas P, Cherbas L, Lee SS, Nakanishi K (1988) 26-125I-iodoponasterone A is a potent ecdysone and a sensitive radioligand for ecdysone receptors. Proc Natl Acad Sci U S A 85: 2096–2100

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Ui K, Ueda R, Miyake T (1987) Cell lines from imaginal discs of Drosophila melanogaster. In Vitro Cell Dev Biol 23:707–711

    Article  CAS  PubMed  Google Scholar 

  19. Clemens JC, Worby CA, Simonson-Leff N, Muda M, Maehama T, Hemmings BA, Dixon JE (2000) Use of double-stranded RNA interference in Drosophila cell lines to dissect signal transduction pathways. Proc Natl Acad Sci U S A 97:6499–6503

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Mitchison TJ, Kirschner MW (1986) Isolation of mammalian centrosomes. Methods Enzymol 134:261–268

    Article  CAS  PubMed  Google Scholar 

  21. Brownlee CW, Klebba JE, Buster DW, Rogers GC (2011) The protein phosphatase 2A regulatory subunit twins stabilizes Plk4 to induce centriole amplification. J Cell Biol 195: 231–243

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Stroh T, Erben U, Kühl AA, Zeitz M, Siegmund B (2010) Combined pulse electroporation—a novel strategy for highly efficient transfection of human and mouse cells. PLoS ONE 5:e9488

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory C. Rogers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Nye, J., Buster, D.W., Rogers, G.C. (2014). The Use of Cultured Drosophila Cells for Studying the Microtubule Cytoskeleton. In: Sharp, D. (eds) Mitosis. Methods in Molecular Biology, vol 1136. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0329-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0329-0_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0328-3

  • Online ISBN: 978-1-4939-0329-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics