Skip to main content

Parameter Optimization for Ion Channel Models: Integrating New Data with Known Channel Properties

  • Protocol
  • First Online:
Computational Methods for Estimating the Kinetic Parameters of Biological Systems

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2385))

Abstract

Ion channels play a central role in membrane physiology, but to fully understand how they operate, one must have accurate kinetic mechanisms. Estimating kinetics is not trivial when the mechanism is complex, and a large number of parameters must be extracted from data. Furthermore, the information contained in the data is often limited, and the model may not be fully determined. The solution is to reduce the number of parameters and to estimate them in such a way that they not only describe well the new data but also agree with the existing knowledge. In a previous study, we presented a comprehensive formalism for estimating kinetic parameters subject to a variety of explicit and implicit constraints that define quantitative relationships between parameters and describe specific mechanism properties. Here, we introduce the reader to the QuB software, which implements this constraining formalism. QuB features a powerful visual interface and a high-level scripting language that can be used to formulate kinetic models and constraints of arbitrary complexity, and to efficiently estimate the parameters from a variety of experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hille B (2001) Ion channels of excitable membranes, vol 507, 3rd edn. Sinauer Associates, Inc., Sunderland, MA

    Google Scholar 

  2. Colquhoun D, Hawkes AG (1995) A Q-matrix cookbook: how to write only one program to calculate the single-channel and macroscopic predictions for any kinetic mechanism. In: Sakmann B, Neher E (eds) Single-channel recording. Plenum Press, New York, pp 589–636

    Chapter  Google Scholar 

  3. Kuo CC, Bean BP (1994) Na+ channels must deactivate to recover from inactivation. Neuron 12(4):819–829

    Article  CAS  Google Scholar 

  4. Colquhoun D, Sigworth F (1995) Fitting and statistical analysis of single-channel records. In: Sakmann B, Neher E (eds) Single-channel recording. Plenum Press, New York, pp 483–587

    Chapter  Google Scholar 

  5. Venkataramanan L, Sigworth F (2002) Applying hidden Markov models to the analysis of single ion channel activity. Biophys J 82(4):1930–1942

    Article  CAS  Google Scholar 

  6. Csanady L (2006) Statistical evaluation of ion-channel gating models based on distributions of log-likelihood ratios. Biophys J 90(10):3523–3545

    Article  CAS  Google Scholar 

  7. Stepanyuk AR, Borisyuk AL, Belan PV (2011) Efficient maximum likelihood estimation of kinetic rate constants from macroscopic currents. PLoS One 6(12):e29731

    Article  CAS  Google Scholar 

  8. Stepanyuk A, Borisyuk A, Belan P (2014) Maximum likelihood estimation of biophysical parameters of synaptic receptors from macroscopic currents. Front Cell Neurosci 8:303

    Article  Google Scholar 

  9. Moffatt L (2007) Estimation of ion channel kinetics from fluctuations of macroscopic currents. Biophys J 93(1):74–91

    Article  CAS  Google Scholar 

  10. Ball FG, Sansom MS (1989) Ion-channel gating mechanisms: model identification and parameter estimation from single channel recordings. Proc R Soc Lond B Biol Sci 236(1285):385–416

    Article  CAS  Google Scholar 

  11. Celentano JJ, Hawkes AG (2004) Use of the covariance matrix in directly fitting kinetic parameters: application to GABAA receptors. Biophys J 87(1):276–294

    Article  CAS  Google Scholar 

  12. Hawkes AG, Jalali A, Colquhoun D (1992) Asymptotic distributions of apparent open times and shut times in a single channel record allowing for the omission of brief events. Philos Trans R Soc Lond Ser B Biol Sci 337(1282):383–404

    Article  CAS  Google Scholar 

  13. Epstein M et al (2016) Bayesian statistical inference in Ion-Channel models with exact missed event correction. Biophys J 111(2):333–348

    Article  CAS  Google Scholar 

  14. Gurkiewicz M, Korngreen A (2007) A numerical approach to ion channel modelling using whole-cell voltage-clamp recordings and a genetic algorithm. PLoS Comput Biol 3(8):e169

    Article  Google Scholar 

  15. Horn R, Lange K (1983) Estimating kinetic constants from single channel data. Biophys J 43(2):207–223

    Article  CAS  Google Scholar 

  16. Menon V, Spruston N, Kath WL (2009) A state-mutating genetic algorithm to design ion-channel models. Proc Natl Acad Sci U S A 106(39):16829–16834

    Article  CAS  Google Scholar 

  17. Qin F, Auerbach A, Sachs F (1996) Estimating single-channel kinetic parameters from idealized patch-clamp data containing missed events. Biophys J 70(1):264–280

    Article  CAS  Google Scholar 

  18. Qin F, Auerbach A, Sachs F (2000) A direct optimization approach to hidden Markov modeling for single channel kinetics. Biophys J 79(4):1915–1927

    Article  CAS  Google Scholar 

  19. Milescu LS, Akk G, Sachs F (2005) Maximum likelihood estimation of ion channel kinetics from macroscopic currents. Biophys J 88(4):2494–2515

    Article  CAS  Google Scholar 

  20. Milescu LS et al (2008) Real-time kinetic modeling of voltage-gated ion channels using dynamic clamp. Biophys J 95(1):66–87

    Article  CAS  Google Scholar 

  21. Salari A, Milescu LS (2016) Modeling the kinetic mechanisms of voltage-gated ion channels. In: Korngreen A (ed) Advanced patch-clamp analysis for neuroscientists, vol 113. Humana Press, New York, pp 267–304

    Chapter  Google Scholar 

  22. Milescu LS et al (2010) Kinetic properties and functional dynamics of sodium channels during repetitive spiking in a slow pacemaker neuron. J Neurosci 30(36):12113–12127

    Article  CAS  Google Scholar 

  23. Bean BP (2007) The action potential in mammalian central neurons. Nat Rev Neurosci 8(6):451–465

    Article  CAS  Google Scholar 

  24. Salari A et al (2018) Estimating kinetic mechanisms with prior knowledge I: linear parameter constraints. J Gen Physiol 150(2):323–338

    Article  CAS  Google Scholar 

  25. Navarro MA et al (2018) Estimating kinetic mechanisms with prior knowledge II: behavioral constraints and numerical tests. J Gen Physiol 150(2):339–354

    Article  Google Scholar 

  26. Navarro MA et al (2015) 3D data mapping and real-time experiment control and visualization in brain slices. Biophys J 109(8):1521–1527

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Navarro, M.A., Amirshenava, M., Salari, A., Milescu, M., Milescu, L.S. (2022). Parameter Optimization for Ion Channel Models: Integrating New Data with Known Channel Properties. In: Vanhaelen, Q. (eds) Computational Methods for Estimating the Kinetic Parameters of Biological Systems. Methods in Molecular Biology, vol 2385. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1767-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1767-0_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1766-3

  • Online ISBN: 978-1-0716-1767-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics