Skip to main content

Inverse RNA Folding Workflow to Design and Test Ribozymes that Include Pseudoknots

  • Protocol
  • First Online:
Ribozymes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2167))

Abstract

Ribozymes are RNAs that catalyze reactions. They occur in nature, and can also be evolved in vitro to catalyze novel reactions. This chapter provides detailed protocols for using inverse folding software to design a ribozyme sequence that will fold to a known ribozyme secondary structure and for testing the catalytic activity of the sequence experimentally. This protocol is able to design sequences that include pseudoknots, which is important as all naturally occurring full-length ribozymes have pseudoknots. The starting point is the known pseudoknot-containing secondary structure of the ribozyme and knowledge of any nucleotides whose identity is required for function. The output of the protocol is a set of sequences that have been tested for function. Using this protocol, we were previously successful at designing highly active double-pseudoknotted HDV ribozymes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Weber W, Fussenegger M (2011) Emerging biomedical applications of synthetic biology. Nat Rev Genet 13(1):21–35. https://doi.org/10.1038/nrg3094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Smanski MJ, Zhou H, Claesen J, Shen B, Fischbach MA, Voigt CA (2016) Synthetic biology to access and expand nature’s chemical diversity. Nat Rev Microbiol 14(3):135–149. https://doi.org/10.1038/nrmicro.2015.24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Glasscock CJ, Lucks JB, DeLisa MP (2016) Engineered protein machines: emergent tools for synthetic biology. Cell Chem Biol 23(1):45–56. https://doi.org/10.1016/j.chembiol.2015.12.004

    Article  CAS  PubMed  Google Scholar 

  4. Baker D (2019) What has de novo protein design taught us about protein folding and biophysics? Protein Sci 28(4):678–683. https://doi.org/10.1002/pro.3588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wolfe BR, Porubsky NJ, Zadeh JN, Dirks RM, Pierce NA (2017) Constrained multistate sequence design for nucleic acid reaction pathway engineering. J Am Chem Soc 139(8):3134–3144. https://doi.org/10.1021/jacs.6b12693

    Article  CAS  PubMed  Google Scholar 

  6. Gu H, Chao J, Xiao SJ, Seeman NC (2009) Dynamic patterning programmed by DNA tiles captured on a DNA origami substrate. Nat Nanotechnol 4(4):245–248. https://doi.org/10.1038/nnano.2009.5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Douglas SM, Marblestone AH, Teerapittayanon S, Vazquez A, Church GM, Shih WM (2009) Rapid prototyping of 3D DNA-origami shapes with caDNAno. Nucleic Acids Res 37(15):5001–5006. https://doi.org/10.1093/nar/gkp436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chappell J, Watters KE, Takahashi MK, Lucks JB (2015) A renaissance in RNA synthetic biology: new mechanisms, applications and tools for the future. Curr Opin Chem Biol 28:47–56. https://doi.org/10.1016/j.cbpa.2015.05.018

    Article  CAS  PubMed  Google Scholar 

  9. Chworos A, Severcan I, Koyfman AY, Weinkam P, Oroudjev E, Hansma HG, Jaeger L (2004) Building programmable jigsaw puzzles with RNA. Science 306(5704):2068–2072. https://doi.org/10.1126/science.1104686

    Article  CAS  PubMed  Google Scholar 

  10. Jain S, Laederach A, Ramos SBV, Schlick T (2018) A pipeline for computational design of novel RNA-like topologies. Nucleic Acids Res 46(14):7040–7051. https://doi.org/10.1093/nar/gky524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jaeger L, Leontis NB (2000) Tecto-RNA: one-dimensional self-assembly through tertiary interactions. Angew Chem Int Ed Engl 39(14):2521–2524. https://doi.org/10.1002/1521-3773(20000717)39:14%3C2521::aid-anie2521%3E3.0.co;2-p

  12. Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249(4968):505–510. https://doi.org/10.1126/science.2200121

  13. Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346(6287):818–822. https://doi.org/10.1038/346818a0

    Article  CAS  PubMed  Google Scholar 

  14. Gold L (2015) SELEX: how it happened and where it will go. J Mol Evol 81(5–6):140–143. https://doi.org/10.1007/s00239-015-9705-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hofacker IL (2014) Energy-directed RNA structure prediction. Methods Mol Biol 1097:71–84. https://doi.org/10.1007/978-1-62703-709-9_4

    Article  CAS  PubMed  Google Scholar 

  16. Seetin MG, Mathews DH (2012) RNA structure prediction: an overview of methods. Methods Mol Biol 905:99–122. https://doi.org/10.1007/978-1-61779-949-5_8

    Article  CAS  PubMed  Google Scholar 

  17. Markham NR, Zuker M (2008) UNAFold: software for nucleic acid folding and hybridization. Methods Mol Biol 453:3–31. https://doi.org/10.1007/978-1-60327-429-6_1

    Article  CAS  PubMed  Google Scholar 

  18. Churkin A, Retwitzer MD, Reinharz V, Ponty Y, Waldispuhl J, Barash D (2018) Design of RNAs: comparing programs for inverse RNA folding. Brief Bioinform 19(2):350–358. https://doi.org/10.1093/bib/bbw120

    Article  CAS  PubMed  Google Scholar 

  19. Andronescu M, Fejes AP, Hutter F, Hoos HH, Condon A (2004) A new algorithm for RNA secondary structure design. J Mol Biol 336(3):607–624. https://doi.org/10.1016/j.jmb.2003.12.041

    Article  CAS  PubMed  Google Scholar 

  20. Busch A, Backofen R (2006) INFO-RNA—a fast approach to inverse RNA folding. Bioinformatics 22(15):1823–1831. https://doi.org/10.1093/bioinformatics/btl194

    Article  CAS  PubMed  Google Scholar 

  21. Zadeh JN, Wolfe BR, Pierce NA (2011) Nucleic acid sequence design via efficient ensemble defect optimization. J Comput Chem 32:439–452. https://doi.org/10.1002/jcc.21633

    Article  CAS  PubMed  Google Scholar 

  22. Hofacker IL, Fontana W, Stadler PF, Bonhoeffer LS, Tacker M, Schuster P (1994) Fast folding and comparison of RNA secondary structures. Monatsh Chem 125:167–168

    Article  CAS  Google Scholar 

  23. Taneda A (2011) MODENA: a multi-objective RNA inverse folding. Adv Appl Bioinform Chem 4:1–12. https://dx.doi.org/10.2147%2Faabc.s14335

    Google Scholar 

  24. Garcia-Martin JA, Clote P, Dotu I (2013) RNAiFOLD: a constraint programming algorithm for RNA inverse folding and molecular design. J Bioinforma Comput Biol 11(2):1350001. https://doi.org/10.1142/S0219720013500017

    Article  CAS  Google Scholar 

  25. Aguirre-Hernandez R, Hoos HH, Condon A (2007) Computational RNA secondary structure design: empirical complexity and improved methods. BMC Bioinformatics 8:34. https://doi.org/10.1186/1471-2105-8-34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Anderson-Lee J, Fisker E, Kosaraju V, Wu M, Kong J, Lee J, Lee M, Zada M, Treuille A, Das R, Eterna P (2016) Principles for predicting RNA secondary structure design difficulty. J Mol Biol 428(5 Pt A):748–757. https://doi.org/10.1016/j.jmb.2015.11.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Andronescu M, Condon A, Turner DH, Mathews DH (2014) The determination of RNA folding nearest neighbor parameters. Methods Mol Biol 1097:45–70. https://doi.org/10.1007/978-1-62703-709-9_3

    Article  CAS  PubMed  Google Scholar 

  28. Garcia-Martin JA, Dotu I, Clote P (2015) RNAiFold 2.0: a web server and software to design custom and Rfam-based RNA molecules. Nucleic Acids Res 43(W1):W513–W521. https://doi.org/10.1093/nar/gkv460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Garcia-Martin JA, Clote P, Dotu I (2013) RNAiFold: a web server for RNA inverse folding and molecular design. Nucleic Acids Res 41(Web Server issue):W465–W470. https://doi.org/10.1093/nar/gkt280

    Article  PubMed  PubMed Central  Google Scholar 

  30. Liu B, Mathews DH, Turner DH (2010) RNA pseudoknots: folding and finding. F1000 Biol Rep 2:8. https://doi.org/10.3410/B2-8

    Article  PubMed  PubMed Central  Google Scholar 

  31. Reuter JS, Mathews DH (2010) RNAstructure: software for RNA secondary structure prediction and analysis. BMC Bioinformatics 11:129. https://doi.org/10.1186/1471-2105-11-129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dotu I, Garcia-Martin JA, Slinger BL, Mechery V, Meyer MM, Clote P (2014) Complete RNA inverse folding: computational design of functional hammerhead ribozymes. Nucleic Acids Res 42(18):11752–11762. https://doi.org/10.1093/nar/gku740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yamagami R, Kayedkhordeh M, Mathews DH, Bevilacqua PC (2019) Design of highly active double-pseudoknotted ribozymes: a combined computational and experimental study. Nucleic Acids Res 47(1):29–42. https://doi.org/10.1093/nar/gky1118

    Article  CAS  PubMed  Google Scholar 

  34. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680. https://doi.org/10.1186/1471-2105-11-129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Crooks GE, Hon G, Chandonia JM, Brenner SE (2004) WebLogo: a sequence logo generator. Genome Res 14(6):1188–1190. https://doi.org/10.1101/gr.849004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Webb CH, Riccitelli NJ, Ruminski DJ, Luptak A (2009) Widespread occurrence of self-cleaving ribozymes. Science 326(5955):953. https://doi.org/10.1126/science.1178084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kalvari I, Argasinska J, Quinones-Olvera N, Nawrocki EP, Rivas E, Eddy SR, Bateman A, Finn RD, Petrov AI (2018) Rfam 13.0: shifting to a genome-centric resource for non-coding RNA families. Nucleic Acids Res 46(D1):D335–D342. https://doi.org/10.1093/nar/gkx1038

    Article  CAS  PubMed  Google Scholar 

  38. Bellaousov S, Kayedkhordeh M, Peterson RJ, Mathews DH (2018) Accelerated RNA secondary structure design using pre-selected sequences for helices and loops. RNA 24:1555–1567. https://doi.org/10.1261/rna.066324.118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bellaousov S, Mathews DH (2010) ProbKnot: fast prediction of RNA secondary structure including pseudoknots. RNA 16:1870–1880. https://doi.org/10.1261/rna.2125310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Fay MM, Lyons SM, Ivanov P (2017) RNA G-quadruplexes in biology: principles and molecular mechanisms. J Mol Biol 429(14):2127–2147. https://doi.org/10.1016/j.jmb.2017.05.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dhapola P, Chowdhury S (2016) QuadBase2: web server for multiplexed guanine quadruplex mining and visualization. Nucleic Acids Res 44(W1):W277–W283. https://doi.org/10.1093/nar/gkw425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Regulski EE, Breaker RR (2008) In-line probing analysis of riboswitches. Methods Mol Biol 419:53–67. https://doi.org/10.1007/978-1-59745-033-1_4

    Article  CAS  PubMed  Google Scholar 

  43. Webb CH, Luptak A (2011) HDV-like self-cleaving ribozymes. RNA Biol 8(5):719–727. https://doi.org/10.4161/rna.8.5.16226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Salehi-Ashtiani K, Luptak A, Litovchick A, Szostak JW (2006) A genomewide search for ribozymes reveals an HDV-like sequence in the human CPEB3 gene. Science 313(5794):1788–1792. https://doi.org/10.1126/science.1129308

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by National Institutes of HealthGrants R35GM127064 to P.C.B. and R01GM076485 to D.H.M. R.Y. was supported by a JSPS Overseas Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Philip C. Bevilacqua or David H. Mathews .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kayedkhordeh, M., Yamagami, R., Bevilacqua, P.C., Mathews, D.H. (2021). Inverse RNA Folding Workflow to Design and Test Ribozymes that Include Pseudoknots. In: Scarborough, R.J., Gatignol, A. (eds) Ribozymes. Methods in Molecular Biology, vol 2167. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0716-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0716-9_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0715-2

  • Online ISBN: 978-1-0716-0716-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics