Skip to main content

RNA Structure Prediction: An Overview of Methods

  • Protocol
  • First Online:
Bacterial Regulatory RNA

Part of the book series: Methods in Molecular Biology ((MIMB,volume 905))

Abstract

RNA is now appreciated to serve numerous cellular roles, and understanding RNA structure is important for understanding a mechanism of action. This contribution discusses the methods available for predicting RNA structure. Secondary structure is the set of the canonical base pairs, and secondary structure can be accurately determined by comparative sequence analysis. Secondary structure can also be predicted. The most commonly used method is free energy minimization. The accuracy of structure prediction is improved either by using experimental mapping data or by predicting a structure conserved in a set of homologous sequences. Additionally, tertiary structure, the three-dimensional arrangement of atoms, can be modeled with guidance from comparative analysis and experimental techniques. New approaches are also available for predicting tertiary structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Crick F (1970) Central dogma of molecular biology. Nature 227:561–563

    PubMed  CAS  Google Scholar 

  2. Guerrier-Takada C, Gardiner K, Marsh T, Pace N, Altman S (1983) The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell 35:849–857

    PubMed  CAS  Google Scholar 

  3. Cech TR, Zaug AJ, Grabowski PJ (1981) In vitro splicing of the ribosomal RNA precursor of Tetrahymena: involvement of a guanosine nucleotide in the excision of the intervening sequence. Cell 27:487–496

    PubMed  CAS  Google Scholar 

  4. Greider CW, Blackburn EH (1985) Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell 43:405–413

    PubMed  CAS  Google Scholar 

  5. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    PubMed  CAS  Google Scholar 

  6. Ban N, Nissen P, Hansen J, Moore PB, Steitz TA (2000) The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution. Science 289:905–920

    PubMed  CAS  Google Scholar 

  7. Schluenzen F, Tocilj A, Zarivach R, Harms J, Gluehmann M, Janell D, Bashan A, Bartels H, Agmon I, Franceschi F et al (2000) Structure of functionally activated small ribosomal subunit at 3.3 Å resolution. Cell 102:615–623

    PubMed  CAS  Google Scholar 

  8. Wimberly BT, Brodersen DE, Clemons WM Jr, Morgan-Warren RJ, Carter AP, Vonrhein C, Hartsch T, Ramakrishnan V (2000) Structure of the 30S ribosomal subunit. Nature 407:327–339

    PubMed  CAS  Google Scholar 

  9. Gottesman S, Storz G (2010) Bacterial small RNA regulators: versatile roles and rapidly evolving variations. Cold Spring Harb Perspect Biol. doi:10.1101/cshperspect.a003798

  10. Montange RK, Batey RT (2008) Riboswitches: emerging themes in RNA structure and function. Annu Rev Biophys 37:117–133

    PubMed  CAS  Google Scholar 

  11. Serganov A, Patel DJ (2007) Ribozymes, riboswitches and beyond: regulation of gene expression without proteins. Nat Rev Genet 8:776–790

    PubMed  CAS  Google Scholar 

  12. Marraffini LA, Sontheimer EJ (2010) CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. Nat Rev Genet 11:181–190

    PubMed  CAS  Google Scholar 

  13. Onoa B, Tinoco I Jr (2004) RNA folding and unfolding. Curr Opin Struct Biol 14:374–379

    PubMed  CAS  Google Scholar 

  14. Latham JA, Cech TR (1989) Defining the inside and outside of a catalytic RNA molecule. Science 245:276–282

    PubMed  CAS  Google Scholar 

  15. Flor PJ, Flanegan JB, Cech TR (1989) A conserved base pair within helix P4 of the Tetrahymena ribozyme helps to form the tertiary structure required for self-splicing. EMBO J 8:3391–3399

    PubMed  CAS  Google Scholar 

  16. Kim YK, Furic L, Parisien M, Major F, DesGroseillers L, Maquat LE (2007) Staufen1 regulates diverse classes of mammalian transcripts. EMBO J 26:2670–2681

    PubMed  CAS  Google Scholar 

  17. Levitt M (1969) Detailed molecular model for transfer ribonucleic acid. Nature 224:759–763

    PubMed  CAS  Google Scholar 

  18. Madison JT, Everett GA, Kung H (1966) Nucleotide sequence of a yeast tyrosine transfer RNA. Science 153:531–534

    PubMed  CAS  Google Scholar 

  19. Robertus JD, Ladner JE, Finch JT, Rhodes D, Brown RS, Clark BFC, Klug A (1974) Structure of yeast phenylalanine tRNA at 3 Å resolution. Nature 250:546–551

    PubMed  CAS  Google Scholar 

  20. Gutell RR, Lee JC, Cannone JJ (2002) The accuracy of ribosomal RNA comparative structure models. Curr Opin Struct Biol 12:301–310

    PubMed  CAS  Google Scholar 

  21. Gardner PP, Daub J, Tate J, Moore BL, Osuch IH, Griffiths-Jones S, Finn RD, Nawrocki EP, Kolbe DL, Eddy SR et al (2010) Rfam: Wikipedia, clans and the “decimal” release. Nucleic Acids Res 39:D141–D145

    PubMed  Google Scholar 

  22. Mathews DH, Disney MD, Childs JL, Schroeder SJ, Zuker M, Turner DH (2004) Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure. Proc Natl Acad Sci U S A 101:7287–7292

    PubMed  CAS  Google Scholar 

  23. Mathews DH, Sabina J, Zuker M, Turner DH (1999) Expanded sequence dependence of thermodynamic parameters provides improved prediction of RNA secondary structure. J Mol Biol 288:911–940

    PubMed  CAS  Google Scholar 

  24. Mathews DH, Turner DH (2002) Experimentally derived nearest neighbor parameters for the stability of RNA three- and four-way multibranch loops. Biochemistry 41:869–880

    PubMed  CAS  Google Scholar 

  25. Turner DH, Mathews DH (2010) NNDB: the nearest neighbor parameter database for predicting stability of nucleic acid secondary structure. Nucleic Acids Res 38:D280–D282

    PubMed  CAS  Google Scholar 

  26. Mathews DH, Turner DH (2006) Prediction of RNA secondary structure by free energy minimization. Curr Opin Struct Biol 16:270–278

    PubMed  CAS  Google Scholar 

  27. Eddy SR (2004) How do RNA folding algorithms work? Nat Biotechnol 22:1457–1458

    PubMed  CAS  Google Scholar 

  28. Reuter J, Mathews D (2010) RNAstructure: software for RNA secondary structure prediction and analysis. BMC Bioinformatics 11:129

    PubMed  Google Scholar 

  29. Mathews DH (2004) Using an RNA secondary structure partition function to determine confidence in base pairs predicted by free energy minimization. RNA 10:1178–1190

    PubMed  CAS  Google Scholar 

  30. Bellaousov S, Mathews DH (2010) ProbKnot: fast prediction of RNA secondary structure including pseudoknots. RNA 16:1870–1880

    PubMed  CAS  Google Scholar 

  31. Kierzek R, Burkard M, Turner D (1999) Thermodynamics of single mismatches in RNA duplexes. Biochemistry 38:14214–14223

    PubMed  CAS  Google Scholar 

  32. Longfellow CE, Kierzek R, Turner DH (1990) Thermodynamic and spectroscopic study of bulge loops in oligoribonucleotides. Biochemistry 29:278–285

    PubMed  CAS  Google Scholar 

  33. Theimer C, Wang Y, Hoffman D, Krisch H, Giedroc D (1998) Non-nearest neighbor effects on the thermodynamics of unfolding of a model mRNA pseudoknot. J Mol Biol 279:545–564

    PubMed  CAS  Google Scholar 

  34. McCaskill JS (1990) The equilibrium partition function and base pair probabilities for RNA secondary structure. Biopolymers 29:1105–1119

    PubMed  CAS  Google Scholar 

  35. Hofacker IL, Stadler PF (2004) Computa­tional science—ICCS 2004. In: Bubak M, van Albada GD, Sloot PMA, Dongarra J (eds) Lecture notes in computer science, vol 3039, Kraków, pp 728–735

    Google Scholar 

  36. Do CB, Woods DA, Batzoglou S (2006) CONTRAfold: RNA secondary structure prediction without physics-based models. Bioinformatics 22:e90–e98

    PubMed  CAS  Google Scholar 

  37. Knudsen B, Hein J (2003) Pfold: RNA secondary structure prediction using stochastic context-free grammars. Nucleic Acids Res 31:3423–3428

    PubMed  CAS  Google Scholar 

  38. Lu ZJ, Gloor JW, Mathews DH (2009) Improved RNA secondary structure prediction by maximizing expected pair accuracy. RNA 15:1805–1813

    PubMed  CAS  Google Scholar 

  39. Stoddard CD, Montange RK, Hennelly SP, Rambo RP, Sanbonmatsu KY, Batey RT (2010) Free state conformational sampling of the SAM-I riboswitch aptamer domain. Structure 18:787–797

    PubMed  CAS  Google Scholar 

  40. Mathews DH (2006) Revolutions in RNA secondary structure prediction. J Mol Biol 359:526–532

    PubMed  CAS  Google Scholar 

  41. Steger G, Hofmann H, Fortsch J, Gross HJ, Randles JW, Sanger HL, Riesner D (1984) Conformational transitions in viroids and virusoids: Comparison of results from energy minimization algorithm and from experimental data. J Biomol Struct Dyn 2:543–571

    PubMed  CAS  Google Scholar 

  42. Zuker M (1989) On finding all suboptimal foldings of an RNA molecule. Science 244:48–52

    PubMed  CAS  Google Scholar 

  43. Wuchty S, Fontana W, Hofacker IL, Schuster P (1999) Complete suboptimal folding of RNA and the stability of secondary structures. Biopolymers 49:145–165

    PubMed  CAS  Google Scholar 

  44. Morgan SR, Higgs PG (1998) Barrier heights between ground states in a model of RNA secondary structure. J Phys A Math Gen 31:3153

    CAS  Google Scholar 

  45. Ding Y, Lawrence C (2001) Statistical prediction of single-stranded regions in RNA secondary structure and application to predicting effective antisense target sites and beyond. Nucleic Acids Res 29:1034–1046

    PubMed  CAS  Google Scholar 

  46. Ding Y, Lawrence CE (2003) A statistical sampling algorithm for RNA secondary structure prediction. Nucleic Acids Res 31:7280–7301

    PubMed  CAS  Google Scholar 

  47. Ding Y, Chan CY, Lawrence CE (2005) RNA secondary structure prediction by centroids in a Boltzmann weighted ensemble. RNA 11:1157–1166

    PubMed  CAS  Google Scholar 

  48. Lyngsø R, Pederson C (2000) RNA pseudoknot prediction in energy-based models. J Comput Biol 7:409–427

    PubMed  Google Scholar 

  49. Aalberts DP, Hodas NO (2005) Asymmetry in RNA pseudoknots: observation and theory. Nucleic Acids Res 33:2210–2214

    PubMed  CAS  Google Scholar 

  50. Cao S, Chen SJ (2006) Predicting RNA pseudoknot folding thermodynamics. Nucleic Acids Res 34:2634–2652

    PubMed  CAS  Google Scholar 

  51. Dirks RM, Pierce NA (2003) A partition function algorithm for nucleic acid secondary structure including pseudoknots. J Comput Chem 24:1664–1677

    PubMed  CAS  Google Scholar 

  52. Adams PL, Stahley MR, Kosek AB, Wang J, Strobel SA (2004) Crystal structure of a self-splicing group I intron with both exons. Nature 430:45–50

    PubMed  CAS  Google Scholar 

  53. Liu B, Mathews DH, Turner DH (2010) RNA pseudoknots: folding and finding. F1000 Biol Rep 2:8

    PubMed  Google Scholar 

  54. Rivas E, Eddy SR (1999) A dynamic programming algorithm for RNA structure prediction including pseudoknots. J Mol Biol 285:2053–2068

    PubMed  CAS  Google Scholar 

  55. Uemura Y, Hasegawa A, Kobayashi S, Yokomori T (1999) Tree adjoining grammars for RNA structure prediction. Theor Comput Sci 210:277–303

    Google Scholar 

  56. Akutsu T (2000) Dynamic programming algorithms for RNA secondary structure prediction with pseudoknots. Discrete Appl Math 104:45–62

    Google Scholar 

  57. Reeder J, Giegerich R (2004) Design, implementation and evaluation of a practical pseudoknot folding algorithm based on thermodynamics. BMC Bioinformatics 5:104

    PubMed  Google Scholar 

  58. Condon A, Davy B, Rastegari B, Zhao S, Tarrant F (2004) Classifying RNA pseudoknotted structures. Theor Comput Sci 320:35–50

    Google Scholar 

  59. Ruan J, Stormo GD, Zhang W (2004) An iterated loop matching approach to the prediction of RNA secondary structures with pseudoknots. Bioinformatics 20:58–66

    PubMed  CAS  Google Scholar 

  60. Ren J, Rastegari B, Condon A, Hoos HH (2005) HotKnots: heuristic prediction of RNA secondary structures including pseudoknots. RNA 11:1494–1504

    PubMed  CAS  Google Scholar 

  61. Jabbari H, Condon A, Zhao S (2008) Novel and efficient RNA secondary structure prediction using hierarchical folding. J Comput Biol 15:139–163

    PubMed  CAS  Google Scholar 

  62. Abrahams JP, van den Berg M, van Batenburg E, Pleij C (1990) Prediction of RNA secondary structure, including pseudoknotting, by computer simulation. Nucleic Acids Res 18:3035–3044

    PubMed  CAS  Google Scholar 

  63. Gultyaev AP, van Batenburg FHD, Pleij CWA (1995) The computer simulation of RNA folding pathways using a genetic algorithm. J Mol Biol 250:37–51

    PubMed  CAS  Google Scholar 

  64. Isambert H, Siggia ED (2000) Modeling RNA folding paths with pseudoknots: application to hepatitis delta virus ribozyme. Proc Natl Acad Sci U S A 97:6515–6520

    PubMed  CAS  Google Scholar 

  65. Dawson WK, Fujiwara K, Kawai G (2007) Prediction of RNA pseudoknots using heuristic modeling with mapping and sequential folding. PLoS One 2:e905

    PubMed  Google Scholar 

  66. Meyer IM, Miklos I (2007) SimulFold: simultaneously inferring RNA structures including pseudoknots, alignments, and trees using a Bayesian MCMC framework. PLoS Comput Biol 3:e149

    PubMed  Google Scholar 

  67. Lockard RE, Kumar A (1981) Mapping tRNA structure in solution using double-strand-specific ribonuclease V1 from cobra venom. Nucleic Acids Res 9:5125–5140

    PubMed  CAS  Google Scholar 

  68. Lowman HB, Draper DE (1986) On the recognition of helical RNA by cobra venom V1 nuclease. J Biol Chem 261:5396–5403

    PubMed  CAS  Google Scholar 

  69. Auron PE, Weber LD, Rich A (1982) Comparison of transfer ribonucleic acid structures using cobra venom and S1 endonucleases. Biochemistry 21:4700–4706

    PubMed  CAS  Google Scholar 

  70. Speek M, Lind A (1982) Structural analyses of E. coli 5S RNA fragments, their associates and complexes with proteins L18 and L25. Nucleic Acids Res 10:947–965

    PubMed  CAS  Google Scholar 

  71. Kertesz M, Wan Y, Mazor E, Rinn JL, Nutter RC, Chang HY, Segal E (2010) Genome-wide measurement of RNA secondary structure in yeast. Nature 467:103–107

    PubMed  CAS  Google Scholar 

  72. Underwood JG, Uzilov AV, Katzman S, Onodera CS, Mainzer JE, Mathews DH, Lowe TM, Salama SR, Haussler D (2010) FragSeq: transcriptome-wide RNA structure probing using high-throughput sequencing. Nat Methods 7:995–1001

    PubMed  CAS  Google Scholar 

  73. Knapp G (1989) Enzymatic approaches to probing RNA secondary and tertiary structure. Methods Enzymol 180:192–212

    PubMed  CAS  Google Scholar 

  74. Miura K, Tsuda S, Ueda T, Harada F, Kato N (1983) Chemical modification of guanine residues of mouse 5S ribosomal RNA with kethoxal. Biochim Biophys Acta 739:281–285

    PubMed  CAS  Google Scholar 

  75. Inoue T, Cech TR (1985) Secondary structure of the circular form of the Tetrahymena rRNA intervening sequence: a technique for RNA structure analysis using chemical probes and reverse transcriptase. Proc Natl Acad Sci U S A 82:648–652

    PubMed  CAS  Google Scholar 

  76. Rocca-Serra P, Bellaousov S, Birmingham A, Chen C, Cordero P, Das R, Davis-Neulander L, Duncan CD, Halvorsen M, Knight R et al (2011) Sharing and archiving nucleic acid structure mapping data. RNA 17:1204–1212

    PubMed  CAS  Google Scholar 

  77. Ehresmann C, Baudin F, Mougel M, Romby P, Ebel J, Ehresmann B (1987) Probing the structure of RNAs in solution. Nucleic Acids Res 15:9109–9128

    PubMed  CAS  Google Scholar 

  78. Fritz JJ, Lewin A, Hauswirth W, Agarwal A, Grant M, Shaw L (2002) Development of hammerhead ribozymes to modulate endogenous gene expression for functional studies. Methods 28:276–285

    PubMed  CAS  Google Scholar 

  79. Karaduman R, Fabrizio P, Hartmuth K, Urlaub H, Lührmann R (2006) RNA structure and RNA-protein interactions in purified yeast U6 snRNPs. J Mol Biol 356:1248–1262

    PubMed  CAS  Google Scholar 

  80. Merino EJ, Wilkinson KA, Coughlan JL, Weeks KM (2005) RNA structure analysis at single nucleotide resolution by selective 2′-hydroxyl acylation and primer extension (SHAPE). J Am Chem Soc 127:4223–4231

    PubMed  CAS  Google Scholar 

  81. Mortimer SA, Weeks KM (2007) A fast-acting reagent for accurate analysis of RNA secondary and tertiary structure by SHAPE chemistry. J Am Chem Soc 129:4144–4145

    PubMed  CAS  Google Scholar 

  82. Wilkinson KA, Gorelick RJ, Vasa SM, Guex N, Rein A, Mathews DH, Giddings MC, Weeks KM (2008) High-throughput SHAPE analysis reveals structures in HIV-1 genomic RNA strongly conserved across distinct biological states. PLoS Biol 6:e96

    PubMed  Google Scholar 

  83. Watts JM, Dang KK, Gorelick RJ, Leonard CW, Bess JW Jr, Swanstrom R, Burch CL, Weeks KM (2009) Architecture and secondary structure of an entire HIV-1 RNA genome. Nature 460:711–716

    PubMed  CAS  Google Scholar 

  84. Lucks JB, Mortimer SA, Trapnell C, Luo S, Aviran S, Schroth GP, Pachter L, Doudna JA, Arkin AP (2011) Multiplexed RNA structure characterization with selective 2′-hydroxyl acylation analyzed by primer extension sequencing (SHAPE-Seq). Proc Natl Acad Sci U S A 108:11063–11068

    PubMed  CAS  Google Scholar 

  85. Deigan KE, Li TW, Mathews DH, Weeks KM (2009) Accurate SHAPE-directed RNA structure determination. Proc Natl Acad Sci U S A 106:97–102

    PubMed  CAS  Google Scholar 

  86. Low JT, Weeks KM (2010) SHAPE-directed RNA secondary structure prediction. Methods 52:150–158

    PubMed  CAS  Google Scholar 

  87. Xu Z, Mathews DH (2011) Multilign: an algorithm to predict secondary structures conserved in multiple RNA sequences. Bioinformatics 27:626–632

    PubMed  CAS  Google Scholar 

  88. Sankoff D (1985) Simultaneous solution of the RNA folding, alignment and protosequence problems. SIAM J Appl Math 45:810–825

    Google Scholar 

  89. Gorodkin J, Heyer LJ, Stormo GD (1997) Finding the most significant common sequence and structure in a set of RNA sequences. Nucleic Acids Res 25:3724–3732

    PubMed  CAS  Google Scholar 

  90. Havgaard JH, Torarinsson E, Gorodkin J (2007) Fast pairwise structural RNA alignments by pruning of the dynamtical programming matrix. PLoS Comput Biol 3:e193

    Google Scholar 

  91. Mathews DH, Turner DH (2002) Dynalign: an algorithm for finding the secondary structure common to two RNA sequences. J Mol Biol 317:191–203

    PubMed  CAS  Google Scholar 

  92. Uzilov AV, Keegan JM, Mathews DH (2006) Detection of non-coding RNAs on the basis of predicted secondary structure formation free energy change. BMC Bioinformatics 7:173

    PubMed  Google Scholar 

  93. Harmanci AO, Sharma G, Mathews DH (2007) Efficient pairwise RNA structure prediction using probabilistic alignment constraints in Dynalign. BMC Bioinformatics 8:130

    PubMed  Google Scholar 

  94. Mathews DH (2005) Predicting a set of minimal free energy RNA secondary structures common to two sequences. Bioinformatics 21:2246–2253

    PubMed  CAS  Google Scholar 

  95. Will S, Reiche K, Hofacker IL, Stadler PF, Backofen R (2007) Inferring noncoding RNA families and classes by means of genome-scale structure-based clustering. PLoS Comput Biol 3:e65

    PubMed  Google Scholar 

  96. Harmanci AO, Sharma G, Mathews DH (2008) PARTS: probabilistic alignment for RNA joinT secondary structure prediction. Nucleic Acids Res 36:2406–2417

    PubMed  CAS  Google Scholar 

  97. Harmanci AO, Sharma G, Mathews DH (2009) Stochastic sampling of the RNA structural alignment space. Nucleic Acids Res 37:4063–4075

    PubMed  CAS  Google Scholar 

  98. Torarinsson E, Havgaard JH, Gorodkin J (2007) Multiple structural alignment and clustering of RNA sequences. Bioinformatics 23:926–932

    PubMed  CAS  Google Scholar 

  99. Do CB, Foo CS, Batzoglou S (2008) A max-margin model for efficient simultaneous alignment and folding of RNA sequences. Bioinformatics 24:i68–i76

    PubMed  CAS  Google Scholar 

  100. Bernhart SH, Hofacker IL, Will S, Gruber AR, Stadler PF (2008) RNAalifold: improved consensus structure prediction for RNA alignments. BMC Bioinformatics 9:474

    PubMed  Google Scholar 

  101. Gardner PP, Wilm A, Washietl S (2005) A benchmark of multiple sequence alignment programs upon structural RNAs. Nucleic Acids Res 33:2433–2439

    PubMed  CAS  Google Scholar 

  102. Hamada M, Kiryu H, Sato K, Mituyama T, Asai K (2009) Prediction of RNA secondary structure using generalized centroid estimators. Bioinformatics 25:465–473

    PubMed  CAS  Google Scholar 

  103. Harmanci AO, Sharma G, Mathews DH (2011) TurboFold: iterative probabilistic estimation of secondary structures for multiple RNA sequences. BMC Bioinformatics 12:108

    PubMed  CAS  Google Scholar 

  104. Steffen P, Voss B, Rehmsmeier M, Reeder J, Giegerich R (2006) RNAshapes: an integrated RNA analysis package based on abstract shapes. Bioinformatics 22:500–503

    PubMed  CAS  Google Scholar 

  105. Höchsmann M, Voss B, Giegerich R (2004) Pure multiple RNA secondary structure alignments: a progressive profile approach. IEEE Trans Comput Biol Bioinform 1:1–10

    Google Scholar 

  106. Moult J, Fidelis K, Kryshtafovych A, Rost B, Tramontano A (2009) Critical assessment of methods of protein structure prediction—round VIII. Proteins 77:1–4

    PubMed  CAS  Google Scholar 

  107. Gutell RR, Noller HF, Woese CR (1986) Higher order structure in ribosomal RNA. EMBO J 5:1111–1113

    PubMed  CAS  Google Scholar 

  108. Cannone JJ, Subramanian S, Schnare MN, Collett JR, D’Souza LM, Du Y, Feng B, Lin N, Madabusi LV, Muller KM et al (2002) The comparative RNA web (CRW) site: an online database of comparative sequence and structure information for ribosomal, intron, and other RNAs. BMC Bioinformatics 3:2

    PubMed  Google Scholar 

  109. Gutell RR, Gray MW, Schnare MN (1993) A compilation of large subunit (23S- and 23S-like) ribosomal RNA structures. Nucleic Acids Res 21:3055–3074

    PubMed  CAS  Google Scholar 

  110. Gutell RR (1994) Collection of small subunit (16S- and 16S-like) ribosomal RNA structures. Nucleic Acids Res 22:3502–3507

    PubMed  CAS  Google Scholar 

  111. Michel F, Westhof E (1990) Modeling of the three-dimensional architecture of group I catalytic introns based on comparative sequence analysis. J Mol Biol 216:585–610

    PubMed  CAS  Google Scholar 

  112. Seetin MG, Mathews DH (2011) Automated RNA tertiary structure prediction from secondary structure and low-resolution restraints. J Comput Chem 32:2232–2244

    CAS  Google Scholar 

  113. Major F, Turcotte M, Gautheret D, Lapalme G, Fillion E, Cedergren R (1991) The combination of symbolic and numerical computation for three-dimensional modeling of RNA. Science 253:1255–1260

    PubMed  CAS  Google Scholar 

  114. Parisien M, Major F (2008) The MC-Fold and MC-Sym pipeline infers RNA structure from sequence data. Nature 452:51–55

    PubMed  CAS  Google Scholar 

  115. Pinard R, Lambert D, Walter NG, Heckman JE, Major F, Burke JM (1999) Structural basis for the guanosine requirement of the hairpin ribozyme. Biochemistry 38:16035–16039

    PubMed  CAS  Google Scholar 

  116. Das R, Baker D (2007) Automated de novo prediction of native-like RNA tertiary structures. Proc Natl Acad Sci U S A 104:14664–14669

    PubMed  CAS  Google Scholar 

  117. Sharma S, Ding F, Dokholyan NV (2008) iFoldRNA: three-dimensional RNA structure prediction and folding. Bioinformatics 24:1951–1952

    PubMed  CAS  Google Scholar 

  118. Jonikas MA, Radmer RJ, Laederach A, Das R, Pearlman S, Herschlag D, Altman RB (2009) Coarse-grained modeling of large RNA molecules with knowledge-based potentials and structural filters. RNA 15:189–199

    PubMed  CAS  Google Scholar 

  119. Ding F, Sharma S, Chalasani P, Demidov VV, Broude NE, Dokholyan NV (2008) Ab initio RNA folding by discrete molecular dynamics: from structure prediction to folding mechanisms. RNA 14:1164–1173

    PubMed  CAS  Google Scholar 

  120. Malhotra A, Tan RK, Harvey SC (1994) Modeling large RNAs and ribonucleoprotein particles using molecular mechanics techniques. Biophys J 66:1777–1795

    PubMed  CAS  Google Scholar 

  121. Tan RKZ, Petrov AS, Harvey SC (2006) YUP: a molecular simulation program for coarse-grained and multiscaled models. J Chem Theory Comput 2:529–540

    PubMed  CAS  Google Scholar 

  122. Jonikas MA, Radmer RJ, Altman RB (2009) Knowledge-based instantiation of full atomic detail into coarse grain RNA 3D structural models. Bioinformatics 25:3259–3266

    PubMed  CAS  Google Scholar 

  123. Bernhart SH, Hofacker IL (2009) From consensus structure prediction to RNA gene finding. Brief Funct Genomic Proteomic 8:461–471

    PubMed  CAS  Google Scholar 

  124. Mathews DH, Moss WN, Turner DH (2010) Folding and finding RNA secondary structure. Cold Spring Harb Perspect Biol 2:a003665

    PubMed  CAS  Google Scholar 

  125. Shapiro BA, Yingling YG, Kasprzak W, Bindewald E (2007) Bridging the gap in RNA structure prediction. Curr Opin Struct Biol 17:157–165

    PubMed  CAS  Google Scholar 

  126. Jossinet F, Ludwig TE, Westhof E (2007) RNA structure: bioinformatic analysis. Curr Opin Microbiol 10:279–285

    PubMed  CAS  Google Scholar 

  127. Szymanski M, Barciszewska MZ, Erdmann VA, Barciszewski J (2002) 5S ribosomal RNA database. Nucleic Acids Res 30:176–178

    PubMed  CAS  Google Scholar 

  128. Crick FH (1958) On protein synthesis. Symp Soc Exp Biol 12:138–163

    PubMed  CAS  Google Scholar 

  129. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    PubMed  CAS  Google Scholar 

  130. Hofacker IL (2003) Vienna RNA secondary structure server. Nucleic Acids Res 31:3429–3431

    PubMed  CAS  Google Scholar 

  131. Hofacker IL, Fontana W, Stadler PF, Bonhoeffer LS, Tacker M, Schuster P (1994) Fast folding and comparison of RNA secondary structures. Monatsh Chem 125:167–168

    CAS  Google Scholar 

  132. Ding Y, Chan CY, Lawrence CE (2004) Sfold web server for statistical folding and rational design of nucleic acids. Nucleic Acids Res 32:W135–W141

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Joseph E. Wedekind for helpful comments. This contribution was supported by the National Institutes of Health grant R01GM076485 to D.H.M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David H. Mathews .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Seetin, M.G., Mathews, D.H. (2012). RNA Structure Prediction: An Overview of Methods. In: Keiler, K. (eds) Bacterial Regulatory RNA. Methods in Molecular Biology, vol 905. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-949-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-949-5_8

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-948-8

  • Online ISBN: 978-1-61779-949-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics