Skip to main content

Quantitative Protein Disorder Assessment Using NMR Chemical Shifts

  • Protocol
  • First Online:
Intrinsically Disordered Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2141))

Abstract

Disorder is vital for the biological function of many proteins. The huge diversity found in disorder composition and amplitude reflects the complexity and pluripotency of intrinsically disordered proteins (IDPs). The first step toward a better understanding of IDPs is a quantitative and position-specific experimental characterization, and nuclear magnetic resonance (NMR) spectroscopy has emerged as the method of first choice. Here, we describe how to quantitatively assess the local balance between order and disorder in proteins by utilizing the Chemical shift Z-score for assessing Order/Disorder (CheZOD Z-score). This order/disorder metric is computed from the difference between experimentally determined NMR chemical shifts and computed random coil reference values. We explain in detail how CheZOD Z-scores are calculated fast and easily, either by using a python executable or by data submission to a server.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. van der Lee R, Buljan M, Lang B, Weatheritt RJ, Daughdrill GW, Dunker AK, Fuxreiter M, Gough J, Gsponer J, Jones DT, Kim PM, Kriwacki RW, Oldfield CJ, Pappu RV, Tompa P, Uversky VN, Wright PE, Babu MM (2014) Classification of intrinsically disordered regions and proteins. Chem Rev 114(13):6589–6631

    Article  Google Scholar 

  2. Wright PE, Dyson HJ (1999) Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm. J Mol Biol 293(2):321–331

    Article  CAS  Google Scholar 

  3. Dyson HJ, Wright PE (2005) Intrinsically unstructured proteins and their functions. Nat Rev Mol Cell Biol 6(3):197–208

    Article  CAS  Google Scholar 

  4. Romero P, Obradovic Z, Dunker AK (2004) Natively disordered proteins: functions and predictions. Appl Bioinforma 3(2-3):105–113

    Article  CAS  Google Scholar 

  5. Uversky VN, Oldfield CJ, Dunker AK (2008) Intrinsically disordered proteins in human diseases: introducing the D2 concept. Annu Rev Biophys 37:215–246

    Article  CAS  Google Scholar 

  6. Midic U, Oldfield CJ, Dunker AK, Obradovic Z, Uversky VN (2009) Unfoldomics of human genetic diseases: illustrative examples of ordered and intrinsically disordered members of the human diseasome. Protein Pept Lett 16(12):1533–1547

    Article  CAS  Google Scholar 

  7. Jensen MR, Ruigrok RW, Blackledge M (2013) Describing intrinsically disordered proteins at atomic resolution by NMR. Curr Opin Struct Biol 23(3):426–435

    Article  CAS  Google Scholar 

  8. Kragelj J, Ozenne V, Blackledge M, Jensen MR (2013) Conformational propensities of intrinsically disordered proteins from NMR chemical shifts. ChemPhysChem 14(13):3034–3045

    Article  CAS  Google Scholar 

  9. Felli IC, Pierattelli R (2014) Novel methods based on (13)C detection to study intrinsically disordered proteins. J Magn Reson 241:115–125

    Article  CAS  Google Scholar 

  10. Konrat R (2014) NMR contributions to structural dynamics studies of intrinsically disordered proteins. J Magn Reson 241:74–85

    Article  CAS  Google Scholar 

  11. Nielsen JT, Mulder FAA (2018) POTENCI: prediction of temperature, neighbor and pH-corrected chemical shifts for intrinsically disordered proteins. J Biomol NMR 70(3):141–165

    Article  CAS  Google Scholar 

  12. Wishart DS, Bigam CG, Holm A, Hodges RS, Sykes BD (1995) 1H, 13C and 15N random coil NMR chemical shifts of the common amino acids. I. Investigations of nearest-neighbor effects. J Biomol NMR 5(1):67–81

    Article  CAS  Google Scholar 

  13. Kjaergaard M, Brander S, Poulsen FM (2011) Random coil chemical shift for intrinsically disordered proteins: effects of temperature and pH. J Biomol NMR 49(2):139–149

    Article  CAS  Google Scholar 

  14. Platzer G, Okon M, McIntosh LP (2014) pH-dependent random coil (1)H, (13)C, and (15)N chemical shifts of the ionizable amino acids: a guide for protein pKa measurements. J Biomol NMR 60(2-3):109–129

    Article  CAS  Google Scholar 

  15. Tamiola K, Scheek RM, van der Meulen P, Mulder FAA (2018) pepKalc: scalable and comprehensive calculation of electrostatic interactions in random coil polypeptides. Bioinformatics 34(12):2053–2060

    Article  CAS  Google Scholar 

  16. Berjanskii MV, Wishart DS (2005) A simple method to predict protein flexibility using secondary chemical shifts. J Am Chem Soc 127(43):14970–14971

    Article  CAS  Google Scholar 

  17. Marsh JA, Singh VK, Jia Z, Forman-Kay JD (2006) Sensitivity of secondary structure propensities to sequence differences between alpha- and gamma-synuclein: implications for fibrillation. Protein Sci 15(12):2795–2804

    Article  CAS  Google Scholar 

  18. Camilloni C, De Simone A, Vranken WF, Vendruscolo M (2012) Determination of secondary structure populations in disordered states of proteins using nuclear magnetic resonance chemical shifts. Biochemistry 51(11):2224–2231

    Article  CAS  Google Scholar 

  19. Kjaergaard M, Poulsen FM (2012) Disordered proteins studied by chemical shifts. Prog Nucl Magn Reson Spectrosc 60:42–51

    Article  CAS  Google Scholar 

  20. Tamiola K, Mulder FAA (2012) Using NMR chemical shifts to calculate the propensity for structural order and disorder in proteins. Biochem Soc Trans 40:1014–1020

    Article  CAS  Google Scholar 

  21. Nielsen JT, Mulder FAA (2016) There is diversity in disorder—“in all chaos there is a cosmos, in all disorder a secret order”. Front Mol Biosci 3:4

    Article  Google Scholar 

  22. Canal L (2005) A normal approximation for the chi-square distribution. Comput. Stat. Data Anal. 48(4):803–808

    Article  Google Scholar 

  23. Nielsen JT, Mulder FAA (2019) Quality and bias of protein disorder predictors. Sci Rep 9(1):5137

    Article  Google Scholar 

  24. Uversky VN (2019) Intrinsically disordered proteins and their “mysterious” (meta)physics. Front Phys 7:10

    Article  Google Scholar 

  25. Sattler M, Schleucher J, Griesinger C (1999) Heteronuclear multidimensional NMR experiments for the structure determination of proteins in solution. Prog Nucl Magn Reson Spectrosc 34:93–158

    Article  CAS  Google Scholar 

  26. Brutscher B, Felli IC, Gil-Caballero S, Hosek T, Kummerle R, Piai A, Pierattelli R, Solyom Z (2015) NMR methods for the study of intrinsically disordered proteins structure, dynamics, and interactions: general overview and practical guidelines. Adv Exp Med Biol 870:49–122

    Article  CAS  Google Scholar 

  27. Wang Y, Jardetzky O (2002) Investigation of the Neighboring residue effects on protein chemical shifts. J Am Chem Soc 124(47):14075–14084

    Article  CAS  Google Scholar 

  28. Chen-Plotkin AS, Lee VMY, Trojanowski JQ (2010) TAR DNA-binding protein 43 in neurodegenerative disease. Nat Rev Neurol 6:211

    Article  CAS  Google Scholar 

  29. Chang CK, Chiang MH, Toh EK, Chang CF, Huang TH (2013) Molecular mechanism of oxidation-induced TDP-43 RRM1 aggregation and loss of function. FEBS Lett 587(6):575–582

    Article  CAS  Google Scholar 

  30. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Automat Contr 19(6):716–723

    Article  Google Scholar 

  31. Akaike H (1985) Prediction and entropy. In: Atkinson A, Fienberg S (eds) A Celebration of statistics. Springer, New York, pp 1–24. https://doi.org/10.1007/978-1-4613-8560-8_1

    Chapter  Google Scholar 

Download references

Acknowledgments

We are indebted to all researchers who have deposited NMR data in the BMRB and are grateful to the visionaries who have initiated this data collection initiative. Ian H. Gotliebsen is acknowledged for technical support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jakob T. Nielsen or Frans A. A. Mulder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Nielsen, J.T., Mulder, F.A.A. (2020). Quantitative Protein Disorder Assessment Using NMR Chemical Shifts. In: Kragelund, B.B., Skriver, K. (eds) Intrinsically Disordered Proteins. Methods in Molecular Biology, vol 2141. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0524-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0524-0_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0523-3

  • Online ISBN: 978-1-0716-0524-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics