Skip to main content

RNA and CRISPR Interferences: Past, Present, and Future Perspectives

  • Protocol
  • First Online:
RNA Interference and CRISPR Technologies

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2115))

Abstract

RNA interference (RNAi), a natural gene silencing process, is a widely used technique in basic research, preclinical studies, and drug development strategies. Although the technique has great potential to generate new human therapies and treat undruggable diseases, the clinical application of RNAi is still challenging primarily because of the delivery problem and potential off-target effects. Over the past two decades, great efforts have been undertaken to develop delivery agents and chemical modifications to overcome these challenges. Such advances in RNA delivery and chemical modifications have benefited researchers who are developing gene-editing therapies based on CRISPR-Cas9, an RNA-guided endonuclease, which is already having a major impact on biology and medicine. Here, I review the discovery of these two interference tools, identify the technical challenges yet to be overcome and provide some perspectives on how these two RNA-based technologies can be harnessed to treat human diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Napoli C, Lemieux C, Jorgensen R (1990) Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2:279–289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Guo S, Kemphues KJ (1995) par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed. Cell 81:611–620

    Article  CAS  PubMed  Google Scholar 

  3. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    Article  CAS  PubMed  Google Scholar 

  4. Hamilton AJ, Baulcombe DC (1999) A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286:950–952

    Article  CAS  PubMed  Google Scholar 

  5. Zamore PD, Tuschl T, Sharp PA, Bartel DP (2000) RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101:25–33

    Article  CAS  PubMed  Google Scholar 

  6. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411:494–498

    Article  CAS  PubMed  Google Scholar 

  7. Yan KS, Yan S, Farooq A, Han A, Zeng L, Zhou MM (2003) Structure and conserved RNA binding of the PAZ domain. Nature 426:468–474

    Article  PubMed  CAS  Google Scholar 

  8. Pencheva N, Tavazoie SF (2013) Control of metastatic progression by microRNA regulatory networks. Nat Cell Biol 15:546–554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zamore PD, Haley B (2005) Ribogenome: the big word of small RNAs. Science 309:1519–1524

    Article  CAS  PubMed  Google Scholar 

  10. Sioud M (2011) Promises and challenges in developing RNAi as a research tool and therapy. Methods Mol Biol 703:173–187

    Article  CAS  PubMed  Google Scholar 

  11. Kim VN (2005) MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol 6:376–385

    Article  CAS  PubMed  Google Scholar 

  12. Liu Q, Rand TA, Kalidas S, Du F, Kim HE, Smith DP, Wang X (2003) R2d2, a bridge between the initiation and effector steps of the drosophila RNAi pathway. Science 301:1921–1925

    Article  CAS  PubMed  Google Scholar 

  13. Liu X, Jiang F, Kalidas S, Smith D, Liu Q (2006) Dicer-2 and R2D2 coordinately bind siRNA to promote assembly of the siRISC complexes. RNA 12:1514–1520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Matranga C, Tomari Y, Shin C, Bartel DP, Zamore PD (2005) Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes. Cell 123:607–620

    Article  CAS  PubMed  Google Scholar 

  15. Wee LM, Flores-Jasso CF, Salomon WE, Zamore PD (2012) Argonaute divides its RNA guide into domains with distinct functions and RNA-binding properties. Cell 151:1055–1067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tomari Y, Matranga C, Haley B, Martinez N, Zamore PD (2004) A protein sensor for siRNA asymmetry. Science 306:1377–1380

    Article  CAS  PubMed  Google Scholar 

  17. Schwarz DS, Hutvagner G, Du T, Xu Z, Aronin N et al (2003) Asymmetry in the assembly of the RNAi enzyme complex. Cell 115:199–208

    Article  CAS  PubMed  Google Scholar 

  18. Reyolds A, Leake D, Boese Q, Scaringe S, Marchall WS et al (2004) Rational siRNA design for RNA interference. Nat Biotechnol 22:326–330

    Article  CAS  Google Scholar 

  19. Ui-Tei K, Naito Y, Takahashi F, Haraguchi T, Ohki-Hamazaki H et al (2004) Guidelines for the selection of highly effective siRNA sequences for mammalian and chick RNA interference. Nucleic Acids Res 32:936–948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sano M, Sierant M, Miyagishi M, Nakanishi M, Takagi Y, Sutou S (2008) Effect of asymmetric terminal structures of short RNA duplexes on the RNA interference activity and strand selection. Nucleic Acids Res 36:5812–5821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jackson AL, Burchard J, Leake D, Reynolds A, Schelter J, Guo J, Johnson JM, Lim L, Karpilow J, Nichols K, Marshall W, Khvorova A, Linsley PS (2006) Position-specific chemical modification of siRNAs reduces “off-target” transcript silencing. RNA 12:1197–1205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Paul CP, Good PD, Winer I et al (2002) Effective expression of small interference RNA in human cells. Nat Biotechnol 20:505–508

    Article  CAS  PubMed  Google Scholar 

  23. Watts JK, Deleavey GF, Damha MJ (2008) Chemically modified siRNA: tools and applications. Drug Discov Today 13:842–855

    Article  CAS  PubMed  Google Scholar 

  24. Hoerter JA, Walter NG (2007) Chemical modification resolves the asymmetry of siRNA strand degradation in human blood serum. RNA 13:1887–1893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mook OR, Baas F, de Wissel MB, Fluiter K (2007) Evaluation of locked nucleic acid-modified small interfering RNA in vitro and in vivo. Mol Cancer Ther 6:833–843

    Article  CAS  PubMed  Google Scholar 

  26. Laursen MB, Pakula MM, Gao S, Fluiter K, Mook OR, Baas F et al (2010) Utilisation of unlocked nucleic acid to enhance siRNA performance in vitro and in vivo. Mol BioSyst 6:862–870

    Article  CAS  PubMed  Google Scholar 

  27. Sioud M (2006) Single-stranded small interfering RNA are more immunostimulatory than their double-stranded counterparts: a central role for 2′-hydroxyl uridines in immune responses. Eur J Immunol 36:1222–1230

    Article  CAS  PubMed  Google Scholar 

  28. Rettig GR, Behlke MA (2012) Progress toward in vivo use of siRNAs-ii. Mol Ther 20:483–512

    Article  CAS  PubMed  Google Scholar 

  29. Furset G, Sioud M (2007) Design of bifunctional siRNAs: combining immunostimulation and gene-silencing in one single siRNA molecule. Biochem Biophy Res Commun 352:642–649

    Article  CAS  Google Scholar 

  30. Barton GM, Medzhitov R (2002) Retroviral delivery of small interfering RNA into primary cells. Proc Natl Acad Sci U S A 99:14943–14945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Winston WM, Molodowitch C, Hunter CP (2002) Systemic RNAi in C. elegans requires the putative transmembrane protein SID-1. Science 295:2456–2459

    Article  CAS  PubMed  Google Scholar 

  32. Saleh MC, Van Rij RP, Hekele A, Gillis A, Foley E, O’Farrell PH, Andino R (2006) The endocytic pathway mediates cell entry of dsRNA to induce RNAi silencing. Nat Cell Biol 8:793–802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Fougerolles AD, Vornlocher HP, Maraganore J et al (2007) Interfering with disease: a progress report on siRNA-based therapeutics. Nat Rev Drug Discov 6:443–453

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. Feinberg EH, Hunter CP (2003) Transport of dsRNA into cells by the transmembrane protein SID-1. Science 301:1545–1547

    Article  CAS  PubMed  Google Scholar 

  35. Dowdy SF (2017) Overcoming cellular barriers for RNA therapeutics. Nat Biotechnol 35:222–227

    Article  CAS  PubMed  Google Scholar 

  36. Simoes S, Filipe A, Faneca H, Mano M, Penacho N, Duzgunes N, De Lima MP (2005) Cationic liposomes for gene delivery. Expert Opin Drug Deliv 2:237–254

    Article  CAS  PubMed  Google Scholar 

  37. Sun TM, Du JZ, Yan LF et al (2008) Self-assembled biodegradable micellar nanoparticles of amphiphilic and cationic block copolymer for siRNA delivery. Biomaterials 29:4348–4355

    Article  CAS  PubMed  Google Scholar 

  38. Peer D, Karp JM, Hong S et al (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2:751–760

    Article  CAS  PubMed  Google Scholar 

  39. Gomes-Da-Silva LC, Fonseca NA, Moura V, Pedroso De Lima MC, Simoes S, Moreira JN (2012) Lipid-based nanoparticles for siRNA delivery in cancer therapy: paradigms and challenges. Acc Chem Res 45:1163–1171

    Article  CAS  PubMed  Google Scholar 

  40. Morrissey DV, Lockridge JA, Shaw L, Blanchard K, Jensen K, Breen W, Hartsough K, Machemer L, Radka S, Jadhav V, Vaish N, Zinnen S, Vargeese C, Bowman K, Shaffer CS, Jeffs LB, Judge A, Maclachlan I, Polisky B (2005) Potent and persistent in vivo anti-HBV activity of chemically modified siRNAs. Nat Biotechnol 23:1002–1007

    Article  CAS  PubMed  Google Scholar 

  41. Zimmermann TS, Lee AC, Akinc A, Bramlage B, Bumcrot D, Fedoruk MN et al (2006) RNAi-mediated gene silencing in non-human primates. Nature 441:111–114

    Article  CAS  PubMed  Google Scholar 

  42. Judge AD, Robbins M, Tavakoli I, Levi J, Hu L, Fronda A, Ambegia E, Mcclintock K, Maclachlan I (2009) Confirming the RNAi-mediated mechanism of action of siRNA-based cancer therapeutics in mice. J Clin Invest 119:661–673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhang Y, Zhang YF, Bryant J, Charles A, Boado RJ, Pardridge WM (2004) Intravenous RNA interference gene therapy targeting the human epidermal growth factor receptor prolongs survival in intracranial brain cancer. Clin Cancer Res 10:3667–3677

    Article  CAS  PubMed  Google Scholar 

  44. Wolfrum C, Shi S, Jayaprakash KN et al (2007) Mechanisms and optimization of in vivo delivery of lipophilic siRNAs. Nat Biotechnol 25:1149–1157

    Article  CAS  PubMed  Google Scholar 

  45. Lundberg M, Wikstrom S, Johansson M (2003) Cell surface adherence and endocytosis of protein transduction domains. Mol Ther 8:143–150

    Article  CAS  PubMed  Google Scholar 

  46. Oishi M, Nagasaki Y, Itaka K et al (2005) Lactosylated poly(ethylene glycol)-siRNA conjugate through acid-labile β-thiopropionate linkage to construct pH-sensitive polyion complex micelles achieving enhanced gene silencing in hepatoma cells. J Am Chem Soc 127:1624–1625

    Article  CAS  PubMed  Google Scholar 

  47. Behr J-P (1997) The proton sponge: a trick to enter cells the viruses did not exploit. Chimia 51:34–36

    CAS  Google Scholar 

  48. Stevenson M, Ramos-Perez V, Singh S et al (2008) Delivery of siRNA mediated by histidine-containing reducible polycations. J Control Release 130:46–56

    Article  CAS  PubMed  Google Scholar 

  49. Leng Q, Scaria P, Lu P et al (2008) Systemic delivery of HK Raf-1 siRNA polyplexes inhibits MDA-MB-435 xenografts. Cancer Gene Ther 15:485–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kumar VV, Pichon C, Refregiers M et al (2003) Single histidine residue in head-group region is sufficient to impart remarkable gene transfection properties to cationic lipids: evidence for histidine mediated membrane fusion at acidic pH. Gene Ther 10:1206–1215

    Article  CAS  PubMed  Google Scholar 

  51. Takae S, Miyata K, Oba M et al (2008) PEG-detachable polyplex micelles based on disulfide-linked block catiomers as bioresponsive nonviral gene vectors. J Am Chem Soc 130:6001–6009

    Article  CAS  PubMed  Google Scholar 

  52. Sahay G, Querbes W, Alabi C, Eltoukhy A, Sarkar S, Zurenko C et al (2013) Efficiency of siRNA delivery by lipid nanoparticles is limited by endocytic recycling. Nat Biotechnol 31:653–658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gilleron J, Querbes W, Zeigerer A, Borodovsky A, Marsico G, Schubert U et al (2013) Image-based analysis of lipid nanoparticle-mediated siRNA delivery, intracellular trafficking and endosomal escape. Nat Biotechnol 31:638–646

    Article  CAS  PubMed  Google Scholar 

  54. Kim HJ, Kim A, Miyata K, Kataoka K (2016) Recent progress in development of siRNA delivery vehicles for cancer therapy. Adv Drug Deliv Rev 104:61–77

    Article  CAS  PubMed  Google Scholar 

  55. Zimmermann TS, Karsten V, Chan A, Chiesa J, Boyce M et al (2017) Clinical Proof of concept for a novel hepatocyte-targeting GalNAc-siRNA conjugate. Mol Ther 25:71–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Sioud M (2007) RNA interference and innate immunity. Adv Drug Deliv Rev 59:153–163

    Article  CAS  PubMed  Google Scholar 

  57. Horvath P, Barrangou R (2010) CRISPR/Cas, the immune system of bacteria and archaea. Science 327:167–170

    Article  CAS  PubMed  Google Scholar 

  58. Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A (1987) J Bacteriol 169:5429–5433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Barrangou R, Fremaux C, Deveau H et al (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315:1709–1712

    Article  CAS  PubMed  Google Scholar 

  60. Terns MP (2018) CRISPR-based technologies: impact of RNA-targeting systems. Mol Cell 72:404–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Mali P, Yang L, Esvelt KM et al (2013) RNA-guided human genome engineering via Cas9. Science 339:823–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Rahdar M, McMahon MA, Prakash TP, Swayze EE, Bennett CF, Cleveland DW (2015) Synthetic CRISPR RNA-Cas9-guided genome editing in human cells. Proc Natl Acad Sci U S A 112(51):E7110–E7117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hu JH, Miller SM, Geurts MH, Tang W et al (2018) Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature 556:57–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Abudayyeh OO, Gootenberg JS, Essletzbichler P et al (2017) RNA targeting with CRISPR-Cas13. Nature 550:280–284

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Wienert B, Wyman SK, Richardson CD, Akcakaya P, Porritt MJ et al (2019) Unbiased detection of CRISPR off-targets in vivo using DISCOVER-Seq. Science 364:286–289

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Trasanidou D, Geros AS, Mohanraju P, Nieuwenweg AC, Nobrega FL, Staals RHJ (2019) Keeping CRISPR in check: diverse mechanisms of phage-encoded anti-CRISPRs. FEMS Microbial Lett 366:fnz098. https://doi.org/10.1093/femsle/fnz098

    Article  CAS  Google Scholar 

  68. Sioud M (2019) Phage display libraries: from binders to targeted drug delivery and human therapeutics. Mol Biotechnol 61:286–303

    Article  CAS  PubMed  Google Scholar 

  69. Dybwad A, Bogen B, Natvig JB, F½rre O, Sioud M (1995) Peptide phage libraries can be an efficient tool for identifying antibody ligands for polyclonal antisera. Clin Exp Immunol 102:438–42

    Article  Google Scholar 

  70. Kjeldsen-Kragh J, Rashid T, Dybwad A, Sioud M, Haugen M, F½rre O, Ebringer A (1995) Decrease in anti-Proteus mirabilis but not anti-Escherichia coli antibody levels in rheumatoid arthritis patients treated with fasting and a one year vegetarian diet. Ann Rheum Dis 54:221–4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Sioud M, Westby P, Vasovic V, Fl½isand Y, Peng Q (2018) Development of a new high-affinity human antibody with antitumor activity against solid and blood malignancie. FASEB J 32:5063–5077

    Article  CAS  PubMed  Google Scholar 

  72. Cox DBT, Gootenberg JS, Abudayyeh OO et al (2017) Science 358:1019–1027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kleinman ME, Yamada K, Takeda A, Chandrasekaran V et al (2008) Sequence- and target-independent angiogenesis suppression by siRNA via TLR3. Nature 452:591–597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Norwegian Cancer Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mouldy Sioud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sioud, M. (2020). RNA and CRISPR Interferences: Past, Present, and Future Perspectives. In: Sioud, M. (eds) RNA Interference and CRISPR Technologies. Methods in Molecular Biology, vol 2115. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0290-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0290-4_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0289-8

  • Online ISBN: 978-1-0716-0290-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics