Skip to main content

Functional Screening of Metagenomic Libraries: Enzymes Acting on Greasy Molecules as Study Case

  • Protocol
  • First Online:
Hydrocarbon and Lipid Microbiology Protocols

Abstract

Greasy molecules such as aromatic and aliphatic hydrocarbons are ubiquitous and chemically heterogeneous microbial substrates that occur in the biosphere through human activities as well as natural inputs. Organic compounds consisting of one, two, or more fused aromatic rings are due to their toxicity considered as pollutants of a great concern; however, they are also important chemical building blocks of relevance for biology, chemistry, and materials sciences. Biological approaches are known to provide exquisite ecologically friendly methods, as compared to chemical ones, for their biodegradation or bioconversions. For that, ubiquitous yet specialized hydrocarbonoclastic bacteria and polycyclic aromatic hydrocarbons (PAH) degrading bacteria of the genera Alcanivorax, Marinobacter, Oleispira, Thalassolitus, Oleiphilus, Cycloclasticus, and Neptunomonas to name some, have developed a complex arsenal of catabolic genes involved in greasy oil component degradation. Oxidoreductases and hydrolases are the first enzymes initiating on their catabolism. The rapid evolution of next generation sequencing methods had a big impact on the identification of genes for metabolism of greasy molecules. But sequencing allows only the identification of enzymes with certain sequence similarity to those previously deposited in databases without functional information. Functional screening of expression libraries from pure cultures or microbial consortia is an alternative approach that solves the problem of sequence similarity and also ensures proper function assignation. Here we describe available screening methods to identify enzymes capable of acting towards greasy molecules that include not only oil components such as alkanes and PAH but also other types of greasy molecules of biotechnological relevance to produce fine chemicals and precursors in chemical industries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bamforth SM, Singleton I (2005) Bioremediation of polycyclic aromatic hydrocarbons: current knowledge and future directions. J Chem Technol Biotechnol 80:723–736

    Article  CAS  Google Scholar 

  2. Kästner M (2000) Degradation of aromatic and polyaromatic compounds. In: Rehm HJ, Reed G (eds) Biotechnology. Wiley-VCH, Weinheim, pp 211–239

    Chapter  Google Scholar 

  3. Guazzaroni ME, Herbst FA, Lores I, Javier Tamames J, Pelaéz AI, López-Cortés N, Alcaide M, Del Pozo MV, Vieites JM, von Bergen M, Gallego JLR, Bargiela R, López-López A, Pieper DH, Ramon Rossello-Mora R, Sánchez J, Seifert J, Ferrer M (2013) Metaproteogenomic insights beyond bacterial response to naphthalene exposure and bio-stimulation. ISME J 7:122–136

    Article  CAS  PubMed  Google Scholar 

  4. Volkering F, Breure AM, van Adel JG (1993) Effect of microorganisms on the bioavailability and biodegradation of crystalline naphthalene. Appl Microbiol Biotechnol 40:535–540

    Article  CAS  Google Scholar 

  5. Bosma TNP, Middeldorp PJM, Scraa G, Zender AJB (1997) Mass transfer limitation of biotransformation: quantifying bioavailability. Environ Sci Technol 31:248–252

    Article  CAS  Google Scholar 

  6. Dolfing J, Xu A, Gray ND, Larter SR, Head IM (2009) The thermodynamic landscape of methanogenic PAH degradation. Microbiol Biotechnol 2:566–574

    Article  CAS  Google Scholar 

  7. Moscoso F, Ferreira L, Deive FJ, Morán P, Sanromán MA (2013) Viability of phenanthrene biodegradation by an isolated bacterial consortium: optimization and scale-up. Bioprocess Biosyst Eng 36:133–141

    Article  CAS  PubMed  Google Scholar 

  8. Habe H, Omori T (2003) Genetic of polycyclic aromatic hydrocarbon metabolism in diverse aerobic bacteria. Biosci Biotechnol Biochem 67:225–243

    Article  CAS  PubMed  Google Scholar 

  9. Peng RH, Xiong AS, Xue Y, Fu XY, Gao F, Zhao W, Tian YS, Yao QH (2008) Microbial biodegradation of polyaromatic hydrocarbons. FEMS Microbiol Rev 32:927–955

    Article  CAS  PubMed  Google Scholar 

  10. Singleton DR, Hu J, Aitken DA (2012) Heterologous expression of polycyclic aromatic hydrocarbon ring-hydroxylating dioxygenase genes from a novel pyrene-degrading Betaproteobacterium. Appl Environ Microbiol 78:3552–3559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Shah V, Jain K, Desai C, Madamwar D (2012) Molecular analyses of microbial activities involved in bioremediation. In: Satyanarayana T, Johri BN, Prakash A (eds) Microorganisms in environmental management: microbes and environment. Springer, Berlin, pp 221–247

    Chapter  Google Scholar 

  12. Martínez-Martínez M, Lores I, Peña-García C, Bargiela R, Reyes-Duarte D, Guazzaroni ME, Peláez AI, Sánchez J, Ferrer M (2014) Biochemical studies on a versatile esterase that is most catalytically active with polyaromatic esters. Microbiol Biotechnol 7:184–191

    Article  Google Scholar 

  13. Bergmann F, Selesi D, Weinmaier T, Tischler P, Rattei T, Meckenstock RU (2011) Genomic insights into the metabolic potential of the polycyclic aromatic hydrocarbon degrading sulfate-reducing Deltaproteobacterium N47emi_2391. Environ Microbiol 13:1125–1137

    Article  CAS  PubMed  Google Scholar 

  14. Chauhan A, Layton AC, Williams DE, Smartt AE, Ripp S, Karpinets TV, Brown SD, Sayler GS (2011) Draft genome sequence of the polycyclic aromatic hydrocarbon-degrading, genetically engineered bioluminescent bioreporter Pseudomonas fluorescens HK44. J Bacteriol 193:5009–5010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fernández-Arrojo L, Guazzaroni ME, López-Cortés N, Beloqui A, Ferrer M (2010) Metagenomic era for biocatalyst identification. Curr Opin Biotechnol 21:725–733

    Article  PubMed  Google Scholar 

  16. Shizuya H, Birren B, Kin UJ, Mancino V, Slepak T, Tachiiri Y, Simon M (1992) Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in Escherichia coli using an F factor-based vector. Proc Natl Acad Sci 89:8794–8797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Vieites JM, Guazzaroni ME, Beloqui A, Golyshin PN, Ferrer M (2010) Molecular methods to study complex microbial communities. In: Streit WR, Daniel R (eds) Metagenomics. Methods and protocols. Humana, Totowa, pp 1–37

    Chapter  Google Scholar 

  18. Alcaide M, Tornes J, Stogios PJ, Xu X, Gertler C, Di Leo R, Bargiela R, Lafraya A, Guazzaroni ME, López-Cortés N, Chernikova TN, Golyshina OV, Nechitaylo TY, Plumeier I, Pieper DH, Yakimov MM, Savchenko A, Golyshin PN, Ferrer M (2013) Single residues dictate the co-evolution of dual esterases: MCP hydrolases from the α/β hydrolase family. Biochem J 454:157–166

    Article  CAS  PubMed  Google Scholar 

  19. Happe B, Eltis LD, Poth H, Hedderich R, Timmis KN (1993) Characterization of 2,2′,3-trihydroxybiphenyl dioxygenase, an extradiol dioxygenase from the dibenzofuran- and dibenzo-p-dioxin-degrading bacterium Sphingomonas sp. strain RW1. J Bacteriol 175:7313–7320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Junca H, Plumeier I, Hecht HJ, Pieper DH (2004) Difference in kinetic behaviour of catechol 2,3-dioxygenase variants from a polluted environment. Microbiology 150:4181–4187

    Article  CAS  PubMed  Google Scholar 

  21. Reyes-Duarte D, Ferrer M, Garcia-Arellano H (2012) Functional-based screening methods for lipases, esterases and phospholipases in metagenomic libraries. In: Sandoval G (ed) Lipases and phospholipases: methods and protocols. Springer, New York, pp 101–113

    Chapter  Google Scholar 

  22. Beloqui A, Polaina J, Vieites JM, Reyes-Duarte D, Torres R, Golyshina OV, Chernikova TN, Waliczek A, Aharoni A, Yakimov MM, Timmis KN, Golyshin PN, Ferrer M (2010) Novel hybrid esterase-haloacid dehalogenase enzyme. Chembiochem 11:1975–1978

    Article  CAS  PubMed  Google Scholar 

  23. Alcaide M, Tchigvintsev A, Martínez-Martínez M, Popovic A, Reva ON, Lafraya Á, Bargiela R, Nechitaylo TY, Matesanz R, Cambon-Bonavita MA, Jebbar M, Yakimov MM, Savchenko A, Golyshina OV, Yakunin AF, Golyshin PN, Ferrer M (2015) Identification and characterization of carboxyl esterases of gill chamber-associated microbiota in the deep-sea shrimp Rimicaris exoculata using functional metagenomics. Appl Environ Microbiol 81(6):2125–2136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Brennerova MV, Josefiova J, Brenner V, Pieper DH, Junca H (2009) Metagenomics reveals diversity and abundance of meta-cleavage pathways in microbial communities from soil highly contaminated with jet fuel under air-sparging bioremediation. Environ Microbiol 11:2216–2227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Suenaga H, Ohnuki T, Miyazaki K (2007) Functional screening of a metagenomic library for genes involved in microbial degradation of aromatic compounds. Environ Microbiol 9:2289–2297

    Article  CAS  PubMed  Google Scholar 

  26. Johannes TW, Woodyer RD, Zhao H (2006) High-throughput screening methods developed for oxidoreductases. In: Reymond JL (ed) Enzyme assays: high-throughput screening, genetic selection and fingerprinting. Wiley-VCH, Weinheim, pp 77–93

    Chapter  Google Scholar 

  27. Singh A, Singh Chauhan N, Thulasiram HV, Taneja V, Sharma R (2010) Identification of two flavin monooxygenases from an effluent treatment plant sludge metagenomic library. Bioresour Technol 101:8481–8484

    Article  CAS  PubMed  Google Scholar 

  28. Lim HK, Chung EJ, Kim JC, Choi GJ, Jang KS, Chung YR, Cho KY, Lee SW (2005) Characterization of a forest soil metagenome clone that confers indirubin and indigo production on Escherichia coli. Appl Environ Microbiol 71:7768–7777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hernáez MJ, Andújar E, Ríos JL, Kaschabek SR, Reineke W, Santero E (2000) Identification of a serine hydrolase which cleaves the alicyclic ring of tetralin. J Bacteriol 182:5448–5453

    Article  PubMed  PubMed Central  Google Scholar 

  30. Thurston CF (1994) The structure and function of fungal laccases. Microbiology 140:19–26

    Article  CAS  Google Scholar 

  31. Baldrian P (2006) Fungal laccases – occurrence and properties. FEMS Microbiol Rev 30:215–242

    Article  CAS  PubMed  Google Scholar 

  32. Eichlerová I, Šnajdr J, Baldrian P (2012) Laccase activity in soils: considerations for the measurement of enzyme activity. Chemosphere 88:1154–1160

    Article  PubMed  Google Scholar 

  33. Beloqui A, Pita M, Polaina J, Martínez-Arias A, Golyshina OV, Zumárraga M, Yakimov MM, García-Arellano H, Alcalde M, Fernández VM, Elborough K, Andreu JM, Ballesteros A, Plou FJ, Timmis KN, Ferrer M, Golyshin PN (2006) Novel polyphenol oxidase mined from a metagenome expression library of bovine rumen: biochemical properties, structural analysis, and phylogenetic relationships. J Biol Chem 28:22933–22942

    Article  Google Scholar 

  34. Stegeman JJ, Lech JJ (1991) Cytochrome P-450 monooxygenase systems in aquatic species: carcinogen metabolism and biomarkers for carcinogen and pollutant exposure. Environ Health Perspect 90:101–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Juchau MR (1990) Substrate specificities and functions of the P450 cytochromes. Life Sci 47:2385–2394

    Article  CAS  PubMed  Google Scholar 

  36. Guengerich FP, Gillam EM, Shimada T (1996) New applications of bacterial systems to problems in toxicology. Crit Rev Toxicol 26:551–583

    Article  CAS  PubMed  Google Scholar 

  37. Schneider S, Wubbolts MG, Sanglard D, Witholt B (1998) Biocatalyst engineering by assembly of fatty acid transport and oxidation activities for In vivo application of cytochrome P-450BM-3 monooxygenase. Appl Environ Microbiol 64:3784–3790

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Schwaneberg U, Schmidt-Dannert C, Schmitt J, Schmid RD (1999) A continuous spectrophotometric assay for P450 BM-3, a fatty acid hydroxylating enzyme, and its mutant F87A. J Biotechnol 269:359–366

    CAS  Google Scholar 

  39. Schwaneberg U, Otey C, Cirino PC, Farinas E, Arnold FH (2001) Cost-effective whole-cell assay for laboratory evolution of hydroxylases in Escherichia coli. J Biomol Screen 6:111–117

    CAS  PubMed  Google Scholar 

  40. Tee KL, Schwaneberg U (2006) A screening system for the directed evolution of epoxygenases: importance of position 184 in P450BM3 for stereoselective styrene epoxidation. Angew Chem Int Ed 45:5380–5383

    Article  CAS  Google Scholar 

  41. Lentz O, Feenstra A, Habicher T, Hauer B, Schmid RD, Urlacher VB (2006) Altering the regioselectivity of cytochrome P450 CYP102A3 of Bacillus subtilis by using a new versatile assay system. ChemBioChem 7:345–350

    Article  CAS  PubMed  Google Scholar 

  42. Guazzaroni ME, Golyshin PN, Ferrer M (2010) Analysis of complex microbial communities through metagenomic survey. In: Marco D (ed) Metagenomics: theory, methods and applications. Caister Academic Press, Norfolk, pp 55–77

    Google Scholar 

  43. Knietsch A, Waschkowitz T, Bowien S, Henne A, Daniel R (2003) Construction and screening of metagenomic libraries derived from enrichment cultures: generation of a gene bank for genes conferring alcohol oxidoreductase activity on Escherichia coli. Appl Environ Microbiol 69:1408–1416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Henning H, Leggewie C, Pohl M, Müller M, Eggert T, Jaeger KE (2006) Identification of novel benzoylformate decarboxylases by growth selection. Appl Environ Microbiol 72:7510–7517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ferrer M, Golyshina OV, Chernikova TN, Khachane AN, Martins Dos Santos VA, Yakimov MM, Timmis KN, Golyshin PN (2005) Microbial enzymes mined from the Urania deep-sea hypersaline anoxic basin. Chem Biol 12:895–904

    Article  CAS  PubMed  Google Scholar 

  46. Ferrer M, Golyshina OV, Chernikova TN, Khachane AN, Reyes-Duarte D, Santos VA, Strompl C, Elborough K, Jarvis G, Neef A, Yakimov MM, Timmis KN, Golyshin PN (2005) Novel hydrolase diversity retrieved from a metagenome library of bovine rumen microflora. Environ Microbiol 7:1996–2010

    Article  CAS  PubMed  Google Scholar 

  47. Anderson JA (1940) The use of tributyrin agar in dairy bacteriology. Rept Proc Int Congr Microbiol 3:726

    Google Scholar 

  48. Sulaiman S, Yamato S, Kanaya E, Kim JJ, Koga Y, Takano K, Kanaya S (2012) Isolation of a novel cutinase homolog with polyethylene terephthalate-degrading activity from leaf-branch compost by using a metagenomic approach. Appl Environ Microbiol 78:1556–1562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kouker G, Jaeger KE (1987) Specific and sensitive plate assay for bacterial lipases. Appl Environ Microbiol 53:211–213

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Mackenzie RD, Blohm TR, Auxier EM, Luther AC (1967) Rapid colorimetric micromethod for free fatty acids. J Lipid Res 8:589–597

    CAS  PubMed  Google Scholar 

  51. Höfelmann M, Kittsteiner-Eberle R, Schreier P (1983) Ultrathin-layer agar gels: a novel print technique for ultrathin-layer isoelectric focusing of enzymes. Anal Biochem 128:217–222

    Article  PubMed  Google Scholar 

  52. Zheng J, Liu C, Liu L, Jin Q (2013) Characterisation of a thermo-alkali-stable lipase from oil-contaminated soil using a metagenomic approach. Syst Appl Microbiol 36:197–204

    Article  CAS  PubMed  Google Scholar 

  53. Svendsen A, Clausen IG, Okkels JS, Thellersen M (1995) A method of preparing a variant of a lipolytic enzyme. Patent: Novo Nordisk, WO 95/22615

    Google Scholar 

  54. Price MF, Wilkinson ID, Gentry LO (1982) Plate method for detection of phospholipase activity in Candida albicans. Sabouraudia 20:7–14

    Article  CAS  PubMed  Google Scholar 

  55. Chang CH, Schindler JF, Unkefer CJ, Vanderberg LA, Brainard JR, Terwilliger TC (1999) In vivo screening of haloalkane dehalogenase mutants. Bioorg Med Chem 7(2175):2181

    Google Scholar 

  56. Mansilla MC, Banchio CE, de Mendoza D (2008) Signalling pathways controlling fatty acid desaturation. Subcell Biochem 49:71–99

    Article  PubMed  Google Scholar 

  57. Okuyama H, Orikasa Y, Nishida T, Watanabe K, Morita N (2007) Bacterial genes responsible for the biosynthesis of eicosapentaenoic and docosahexaenoic acids and their heterologous expression. Appl Environ Microbiol 73:665–670

    Article  CAS  PubMed  Google Scholar 

  58. Broekman JH, Steenbakkers JF (1974) Effect of the osmotic pressure of the growth medium on fabB mutants of Escherichia coli. J Bacteriol 117:971–977

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Johnson BF, Greenberg J (1975) Mapping of sul, the suppressor of lon in Escherichia coli. J Bacteriol 122:570–574

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Glogauer A, Martini VP, Faoro H, Couto GH, Müller-Santos M, Monteiro RA, Mitchell DA, de Souza EM, Pedrosa FO, Krieger N (2011) Identification and characterization of a new true lipase isolated through metagenomic approach. Microb Cell Fact 10:54–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Song JK, Chung B, Oh YH, Rhee JS (2002) Construction of DNA-shuffled and incrementally truncated libraries by a mutagenic and unidirectional reassembly method: changing from a substrate specificity of phospholipase to that of lipase. Appl Environ Microbiol 68:6146–6151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Liu K, Wang J, Bu D, Zhao S, McSweeney C, Yu P, Li D (2009) Isolation and biochemical characterization of two lipases from a metagenomic library of China Holstein cow rumen. Biochem Biophys Res Commun 385:605–611

    Article  CAS  PubMed  Google Scholar 

  63. Tirawongsaroj P, Sriprang R, Harnpicharnchai P, Thongaram T, Champreda V, Tanapongpipat S, Pootanakit K, Eurwilaichitr L (2008) Novel thermophilic and thermostable lipolytic enzymes from a Thailand hot spring metagenomic library. J Biotechnol 133:42–49

    Article  CAS  PubMed  Google Scholar 

  64. Colin DY, Deprez-Beauclair P, Silva N, Infantes L, Kerfelec B (2010) Modification of pancreatic lipase properties by directed molecular evolution. Protein Eng Des Sel 23:365–373

    Article  CAS  PubMed  Google Scholar 

  65. Heravi KM, Eftekhar F, Yakhchali B, Tabandeh F (2008) Isolation and Identification of a Lipase producing Bacillus sp. from soil. Pak J Biol Sci 11:740–745

    Article  CAS  PubMed  Google Scholar 

  66. Okamura Y, Kimura T, Yokouchi H, Meneses-Osorio M, Katoh M, Matsunaga T, Takeyama H (2010) Isolation and characterization of a GDSL esterase from the metagenome of a marine sponge associated bacteria. Mar Biotechnol 12:395–402

    Article  CAS  PubMed  Google Scholar 

  67. Li G, Wang K, Liu YH (2008) Molecular cloning and characterization of a novel pyrethroid hydrolyzing esterase originating from the metagenome. Microb Cell Fact 7:38–47

    Article  PubMed  PubMed Central  Google Scholar 

  68. Dror A, Shemesh E, Dayan N, Fishman A (2014) Protein engineering by random mutagenesis and structure-guided consensus of Geobacillus stearothermophilus lipase T6 for enhanced stability in methanol. Appl Environ Microbiol 80:1515–1527

    Article  PubMed  PubMed Central  Google Scholar 

  69. Akutsu-Shigeno Y, Teeraphatpornchai T, Teamtisong K, Nomura N, Uchiyama H, Nakahara T, Nakajima-Kambe T (2003) Cloning and sequencing of a poly(DL-lactic acid) depolymerase gene from Paenibacillus amylolyticus strain TB-13 and its functional expression in Escherichia coli. Appl Environ Microbiol 69:2498–2504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Choi SL, Rha E, Lee SJ, Kim H, Kwon K, Jeong YS, Rhee YH, Song JJ, Kim HS, Lee SG (2014) Toward a generalized and high-throughput enzyme screening system based on artificial genetic circuits. ACS Synth Biol 3:163–171

    Article  CAS  PubMed  Google Scholar 

  71. Xu M, Xiao X, Wang F (2008) Isolation and characterization of alkane hydroxylases from a metagenomic library of Pacific deep-sea sediment. Extremophiles 12:255–262

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support provided by the European Community project MAMBA (FP7-KBBE-2008-226977), MAGIC-PAH (FP7-KBBE-2009-245226), ULIXES (FP7-KBBE-2010-266473), KILL-SPILL (FP7-KBBE-2012-312139), and MicroB3 (FP7-OCEAN.2011-2-287589). We thank EU Horizon 2020 Program for the support of the Project INMARE H2020-BG-2014-2634486. This work was further funded by grants BIO2011-25012, PCIN-2014-107, and BIO2014-54494-R from the Spanish Ministry of Economy and Competitiveness. The present investigation was also funded by the Spanish Ministry of Economy and Competitiveness within the ERA NET IB2, grant number ERA-IB-14-030. The authors gratefully acknowledge the financial support provided by the European Regional Development Fund (ERDF).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mónica Martínez-Martínez or Manuel Ferrer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this protocol

Cite this protocol

Martínez-Martínez, M., Golyshin, P.N., Ferrer, M. (2015). Functional Screening of Metagenomic Libraries: Enzymes Acting on Greasy Molecules as Study Case. In: McGenity, T., Timmis, K., Nogales, B. (eds) Hydrocarbon and Lipid Microbiology Protocols. Springer Protocols Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8623_2015_104

Download citation

  • DOI: https://doi.org/10.1007/8623_2015_104

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53113-6

  • Online ISBN: 978-3-662-53115-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics