Skip to main content

Integrin Targeting Using RGD-Based Peptide Amphiphiles

  • Protocol
  • First Online:
Integrin Targeting Systems for Tumor Diagnosis and Therapy

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

Abstract

Active targeting has been explored for improving accumulation of drugs at the tumor site via specific ligand receptor interactions. The tripeptide “Arg-Gly-Asp” or RGD has shown tremendous potential as a targeting ligand in improving the delivery of drugs and diagnostic agents to integrin-overexpressing tumors. The different integrin-based targeting drug delivery systems studied include polymeric nanoparticles, polymeric micelles, and dendrimers, most of which are prepared by decorating RGD ligand on the surface of the drug delivery system. Our group previously reported the potential of peptide-based amphiphiles for integrin targeting of hydrophobic drugs. These amphiphiles are built by solid-phase peptide synthesis and contain RGD as the hydrophilic head group (also as a targeting ligand), a fatty acid as lipid tail and multiple units of hydrophilic linker. The focus of this chapter is to outline methodologies used for the synthesis, characterization, and evaluation of these low-molecular-weight RGD-based micellar carriers for delivery of hydrophobic anticancer agents. The experimental details and factors to be considered for optimal methods are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Byrne J, Betancourt T, Peppas L (2008) Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv Drug Deliv Rev 60:1615–1626

    Article  CAS  PubMed  Google Scholar 

  2. Ramsay A, Marshall J, Hart I (2007) Integrin trafficking and its role in cancer metastasis. Cancer Metastasis Rev 26(3-4):567–578

    Article  CAS  PubMed  Google Scholar 

  3. Xiong J, Stehle T, Zhang R et al (2002) Crystal structure of the extracellular segment of integrin αvβ3 in complex with an Arg-Gly-Asp ligand. Science 296(5565):151–155

    Article  CAS  PubMed  Google Scholar 

  4. Allman R, Cowburn P, Mason M (2000) In vitro and in vivo effects of a cyclic peptide with affinity for the αvβ3 integrin in human melanoma cells. Eur J Cancer 36(3):410–422

    Article  CAS  PubMed  Google Scholar 

  5. Reardon D, Nabors L, Stupp R et al (2008) Cilengitide: an integrin-targeting arginine–glycine–aspartic acid peptide with promising activity for glioblastoma multiforme. Expert Opin Investig Drug 17(8):1225–1235

    Article  CAS  Google Scholar 

  6. Mas-Moruno C, Rechenmacher F, Kessler H (2010) Cilengitide: the first anti-angiogenic small molecule drug candidate. Design, synthesis and clinical evaluation. Anticancer Agents Med Chem 10(10):753–768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hartgerink J, Beniash E, Stupp S (2002) Peptide-amphiphile nanofibers: a versatile scaffold for the preparation of self-assembling materials. Proc Natl Acad Sci U S A 99(8):5133–5138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wang Y, Wang X, Zhang Y et al (2009) RGD modified polymeric micelles as potential carriers for targeted delivery to integrin overexpressing tumor vasculature and tumor cells. J Drug Target 17(6):459–467

    Article  CAS  PubMed  Google Scholar 

  9. Danhier F, Vroman B, Lecouturier N et al (2009) Targeting of tumor endothelium by RGD-grafted PLGA-nanoparticles loaded with Paclitaxel. J Control Release 140(2):166–173

    Article  CAS  PubMed  Google Scholar 

  10. Kotamraj P, Russu W, Jasti B et al (2011) Novel integrin-targeted binding triggered drug delivery system for methotrexate. Pharm Res 28(12):3208–3219

    Article  CAS  PubMed  Google Scholar 

  11. Holig P, Bach M, Volkel T et al (2004) Novel RGD lipopeptides for the targeting of liposomes to integrin expressing endothelial and melanoma cells. Protein Eng Des Sel 17(5):433–441

    Article  PubMed  Google Scholar 

  12. Shukla R, Thomas T, Peters J (2005) Tumor angiogenic vasculature targeting with PAMAM dendrimer–RGD conjugates. Chem Commun (Camb) 46:5739–5741

    Article  Google Scholar 

  13. Javali N, Raj A, Saraf P et al (2012) Fatty acid -RGD peptide amphiphile micelles as potential paclitaxel delivery carriers to αvβ3 integrin overexpressing tumors. Pharm Res 29(12):3347–3361

    Article  CAS  PubMed  Google Scholar 

  14. Raj A, Saraf P, Javali N et al (2014) Binding and uptake of novel RGD micelles to the αvβ3 integrin receptor for targeted drug delivery. J Drug Target 22(6):518–527

    Article  CAS  PubMed  Google Scholar 

  15. Saraf P, Li X, Wrischnik L et al (2015) In vitro and in vivo efficacy of self-assembling RGD peptide amphiphiles for targeted delivery of paclitaxel. Pharm Res 32(9):3087–3101

    Article  CAS  PubMed  Google Scholar 

  16. Domínguez A, Fernández A, González N et al (1997) Determination of critical micelle concentration of some surfactants by three techniques. J Chem Educ 74(10):1227–1231

    Article  Google Scholar 

  17. Ray G, Chakraborty I, Moulik S (2006) Pyrene absorption can be a convenient method for probing critical micellar concentration (cmc) and indexing micellar polarity. J Colloid Interface Sci 294(1):248–254

    Article  Google Scholar 

  18. Leng Y (2009) Materials characterization: introduction to microscopic and spectroscopic methods. Wiley, New York, NY. ISBN 978-0-470-82299-9

    Google Scholar 

  19. Han S, Cao S, Wang Y et al (2011) Self-Assembly of short peptide amphiphiles: the cooperative effect of hydrophobic interaction and hydrogen bonding. Chemistry 17(46):13095–13102

    Article  CAS  PubMed  Google Scholar 

  20. Lu J, Owen S, Stoichet M (2011) Stability of self-assembled polymeric micelles in serum. Macromolecules 44(15):6002–6008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chen H, Kim S, Wang S et al (2008) Release of hydrophobic molecules from polymer micelles into cell membranes revealed by Förster resonance energy transfer imaging. Proc Natl Acad Sci U S A 105(18):6596–6601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dong H, Dube N, Shu J et al (2012) Long circulating 15 nm micelles based on amphiphilic 3-Helix Peptide-PEG Conjugates. ACS Nano 6(6):5320–5329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Moerke N (2009) Fluorescence polarization (FP) assays for monitoring peptide-protein or nucleic acid–protein binding. Curr Protoc Chem Biol 1(1):1–15

    PubMed  Google Scholar 

  24. Wang W, Wu Q, Pasuelo M et al (2005) Probing for integrin αvβ3 binding of RGD peptides using fluorescence polarization. Bioconjug Chem 16(3):729–734

    Article  CAS  PubMed  Google Scholar 

  25. Welsh D, Smith D (2011) Comparing dendritic and self-assembly strategies to multivalency-RGD peptide-integrin interactions. Org Biomol Chem 9(13):4795–4801

    Article  CAS  PubMed  Google Scholar 

  26. Vorup-Jensen T (2012) Surface plasmon resonance biosensing in studies of the binding between β2 integrin I domains and their ligands. Methods Mol Biol 757:55–71

    Article  PubMed  Google Scholar 

  27. Price R, Jerome W (eds) (2011) Basic confocal microscopy. Springer, New York, NY

    Google Scholar 

  28. Vega-Avila E, Pugsley M (2011) An overview of colorimetric assay methods used to assess survival or proliferation of mammalian cells. Proc West Pharmacol Soc 54:10–14

    CAS  PubMed  Google Scholar 

  29. Vichai V, Kirtikara K (2006) Sulforhodamine B colorimetric assay for cytotoxicity screening. Nat Protoc 1(3):1112–1116

    Article  CAS  PubMed  Google Scholar 

  30. Sylvester P (2011) Optimization of the tetrazolium dye (MTT) colorimetric assay for cellular growth and viability. Methods Mol Biol 716:157–168

    Article  CAS  PubMed  Google Scholar 

  31. Amblard M, Fehrentz J, Martinez J et al (2006) Methods and protocols of modern solid phase peptide synthesis. Mol Biotechnol 33(3):239–254

    Article  CAS  PubMed  Google Scholar 

  32. Coin I, Beyermann M, Bienert M (2007) Solid-phase peptide synthesis: from standard procedures to the synthesis of difficult sequences. Nat Protoc 2(12):3247–3256

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhaskara Jasti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Saraf, P., Li, X., Jasti, B. (2015). Integrin Targeting Using RGD-Based Peptide Amphiphiles. In: Patsenker, E. (eds) Integrin Targeting Systems for Tumor Diagnosis and Therapy. Methods in Pharmacology and Toxicology. Humana Press, New York, NY. https://doi.org/10.1007/7653_2015_61

Download citation

  • DOI: https://doi.org/10.1007/7653_2015_61

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7443-6

  • Online ISBN: 978-1-4939-7445-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics