Skip to main content

Surface Plasmon Resonance Biosensing in Studies of the Binding Between β2 Integrin I Domains and Their Ligands

  • Protocol
  • First Online:
Integrin and Cell Adhesion Molecules

Part of the book series: Methods in Molecular Biology ((MIMB,volume 757))

Abstract

Measurements on the kinetic aspects of binding between macromolecular species such as proteins have been greatly advanced by the application of surface plasmon resonance (SPR) biosensors. In studies of ligand binding by integrin I domains, technologies such as the BIAcore instruments have provided important insights into the role of conformational regulation. This chapter describes a protocol for studying the binding between the I domain from integrin αXβ2 and its ligand iC3b. Also included are topics on the interpretation of data. Integrin I domains appear to support heterogeneous interactions with ligands, which pose significant challenges in deriving valid information on the binding kinetics from the SPR measurements. Fortunately, new algorithms are available that may resolve even complex ligand-binding reactions; with the application to data on the binding between the αX I domain, a more consistent and unambiguous result is obtained compared to those obtained by classical approaches for analyzing SPR biosensor data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Freifelder, D. (1999) Physical Biochemistry, 2nd ed., W. H. Freeman & Co., New York.

    Google Scholar 

  2. Price, N. C., and Dwek, R. A. (1974) Principles and Problems in Physical Chemistry for Biochemists, Clarendon Press, Oxford.

    Google Scholar 

  3. Piliarik, M., Vaisocherova, H., and Homola, J. (2009) Surface plasmon resonance biosensing, Methods Mol. Biol. 503, 65–88.

    Google Scholar 

  4. Rich, R. L., and Myszka, D. G. (2007) Higher-throughput, label-free, real-time molecular interaction analysis, Anal. Biochem. 361, 1–6.

    Article  PubMed  CAS  Google Scholar 

  5. Schuck, P. (1997) Use of surface plasmon resonance to probe the equilibrium and dynamic aspects of interactions between biological macromolecules, Annu. Rev. Biophys. Biomol. Struct. 26, 541–566.

    Article  PubMed  CAS  Google Scholar 

  6. Karlsson, R., and Larsson, A. (2004) Affinity measurement using surface plasmon resonance, Methods Mol. Biol. 248, 389–415.

    Google Scholar 

  7. Hynes, R. O. (2002) Integrins: Bidirectional, Allosteric Signaling Machines, Cell 110, 673–687.

    Google Scholar 

  8. Springer, T. A. (1990) Adhesion receptors of the immune system, Nature 346, 425–434.

    Article  PubMed  CAS  Google Scholar 

  9. Springer, T. A. (1997) Folding of the N-terminal, ligand-binding region of integrin alpha-subunits into a beta-propeller domain, Proc. Natl. Acad. Sci. USA. 94, 65–72.

    Article  PubMed  CAS  Google Scholar 

  10. Pytela, R. (1988) Amino acid sequence of the murine Mac-1 alpha chain reveals homology with the integrin family and an additional domain related to von Willebrand factor, EMBO J. 7, 1371–1378.

    PubMed  CAS  Google Scholar 

  11. Oxvig, C., and Springer, T. A. (1998) Experimental support for a beta-propeller domain in integrin alpha-subunits and a calcium binding site on its lower surface, Proc. Natl. Acad. Sci. USA. 95, 4870–4875.

    Article  PubMed  CAS  Google Scholar 

  12. Lee, J. O., Bankston, L. A., Arnaout, M. A., and Liddington, R. C. (1995) Two conformations of the integrin A-domain (I-domain): a pathway for activation? Structure 3, 1333–1340.

    Article  PubMed  CAS  Google Scholar 

  13. Lee, J. O., Rieu, P., Arnaout, M. A., and Liddington, R. (1995) Crystal structure of the A domain from the alpha subunit of integrin CR3 (CD11b/CD18), Cell 80, 631–638.

    Article  PubMed  CAS  Google Scholar 

  14. Vorup-Jensen, T., Ostermeier, C., Shimaoka, M., Hommel, U., and Springer, T. A. (2003) Structure and allosteric regulation of the alpha X beta 2 integrin I domain, Proc. Natl. Acad. Sci. USA. 100, 1873–1878.

    Article  PubMed  CAS  Google Scholar 

  15. Nolte, M., Pepinsky, R. B., Venyaminov, S., Koteliansky, V., Gotwals, P. J., and Karpusas, M. (1999) Crystal structure of the alpha1beta1 integrin I-domain: insights into integrin I-domain function, FEBS Lett. 452, 379–385.

    Article  PubMed  CAS  Google Scholar 

  16. Emsley, J., King, S. L., Bergelson, J. M., and Liddington, R. C. (1997) Crystal structure of the I domain from integrin alpha2beta1, J. Biol. Chem. 272, 28512–28517.

    Article  PubMed  CAS  Google Scholar 

  17. Qu, A., and Leahy, D. J. (1995) Crystal structure of the I-domain from the CD11a/CD18 (LFA-1, alpha L beta 2) integrin, Proc. Natl. Acad. Sci. USA. 92, 10277–10281.

    Article  PubMed  CAS  Google Scholar 

  18. Shimaoka, M., Takagi, J., and Springer, T. A. (2002) Conformational regulation of integrin structure and function, Annu. Rev. Biophys. Biomol. Struct. 31, 485–516.

    Article  PubMed  CAS  Google Scholar 

  19. Li, R., Rieu, P., Griffith, D. L., Scott, D., and Arnaout, M. A. (1998) Two functional states of the CD11b A-domain: correlations with key features of two Mn2+-complexed crystal structures, J. Cell. Biol. 143, 1523–1534.

    Article  PubMed  CAS  Google Scholar 

  20. Shimaoka, M., Lu, C., Palframan, R. T., von Andrian, U. H., McCormack, A., Takagi, J., and Springer, T. A. (2001) Reversibly locking a protein fold in an active conformation with a disulfide bond: integrin alphaL I domains with high affinity and antagonist activity in vivo, Proc. Natl. Acad. Sci. USA. 98, 6009–6014.

    Article  PubMed  CAS  Google Scholar 

  21. Shimaoka, M., Xiao, T., Liu, J. H., Yang, Y., Dong, Y., Jun, C. D., McCormack, A., Zhang, R., Joachimiak, A., Takagi, J., Wang, J. H., and Springer, T. A. (2003) Structures of the alpha L I domain and its complex with ICAM-1 reveal a shape-shifting pathway for integrin regulation, Cell 112, 99–111.

    Article  PubMed  CAS  Google Scholar 

  22. Xiong, J. P., Li, R., Essafi, M., Stehle, T., and Arnaout, M. A. (2000) An isoleucine-based allosteric switch controls affinity and shape shifting in integrin CD11b A-domain, J. Biol. Chem. 275, 38762–38767.

    Article  PubMed  CAS  Google Scholar 

  23. Jin, M., Song, G., Carman, C. V., Kim, Y. S., Astrof, N. S., Shimaoka, M., Wittrup, D. K., and Springer, T. A. (2006) Directed evolution to probe protein allostery and integrin I domains of 200,000-fold higher affinity, Proc. Natl. Acad. Sci. USA. 103, 5758–5763.

    Article  PubMed  CAS  Google Scholar 

  24. Vorup-Jensen, T., Waldron, T. T., Astrof, N., Shimaoka, M., and Springer, T. A. (2007) The connection between metal ion affinity and ligand affinity in integrin I domains, Biochim. Biophys. Acta. 1774, 1148–1155.

    Article  PubMed  CAS  Google Scholar 

  25. Vorup-Jensen, T., Carman, C. V., Shimaoka, M., Schuck, P., Svitel, J., and Springer, T. A. (2005) Exposure of acidic residues as a danger signal for recognition of fibrinogen and other macromolecules by integrin alphaXbeta2, Proc. Natl. Acad. Sci. USA. 102, 1614–1619.

    Article  PubMed  CAS  Google Scholar 

  26. Vorup-Jensen, T., Chi, L., Gjelstrup, L. C., Jensen, U. B., Jewett, C. A., Xie, C., Shimaoka, M., Linhardt, R. J., and Springer, T. A. (2007) Binding between the integrin alphaXbeta2 (CD11c/CD18) and heparin, J. Biol. Chem. 282, 30869–30877.

    Article  PubMed  CAS  Google Scholar 

  27. Svitel, J., Boukari, H., Van Ryk, D., Willson, R. C., and Schuck, P. (2007) Probing the functional heterogeneity of surface binding sites by analysis of experimental binding traces and the effect of mass transport limitation, Biophys J. 92, 1742–1758.

    Article  PubMed  CAS  Google Scholar 

  28. Svitel, J., Balbo, A., Mariuzza, R. A., Gonzales, N. R., and Schuck, P. (2003) Combined affinity and rate constant distributions of ligand populations from experimental surface binding kinetics and equilibria, Biophys J. 84, 4062–4077.

    Article  PubMed  CAS  Google Scholar 

  29. O’Shannessy, D. J., and Winzor, D. J. (1996) Interpretation of deviations from pseudo-first-order kinetic behavior in the characterization of ligand binding by biosensor technology, Anal. Biochem. 236, 275–283.

    Article  PubMed  Google Scholar 

  30. Lipschultz, C. A., Li, Y., and Smith-Gill, S. (2000) Experimental design for analysis of complex kinetics using surface plasmon resonance, Methods 20, 310–318.

    Article  PubMed  CAS  Google Scholar 

  31. Collins, A. V., Brodie, D. W., Gilbert, R. J., Iaboni, A., Manso-Sancho, R., Walse, B., Stuart, D. I., van der Merwe, P. A., and Davis, S. J. (2002) The interaction properties of costimulatory molecules revisited, Immunity 17, 201–210.

    Article  PubMed  CAS  Google Scholar 

  32. Sundberg, E. J., Andersen, P. S., Gorshkova, I. I., and Schuck, P. (2007) Surface Plasmon Resonance Biosensing in the Study of Ternary Systems of Interacting Proteins, in Protein Interactions (Schuck, P., Ed.), pp 97–141, Springer US, New York.

    Google Scholar 

  33. Schasfoort, R. B. M., and Schuck, P. (2008) Future Trends in SPR Technology, in Handbook of Surface Plasmon Resonance (Schasfoort, R. B. M., and Tudos, A. J., Eds.), pp 354–392, RSC Publishing, Cambridge.

    Chapter  Google Scholar 

  34. Stapulionis, R., Oliveira, C. L., Gjelstrup, M. C., Pedersen, J. S., Hokland, M. E., Hoffmann, S. V., Poulsen, K., Jacobsen, C., and Vorup-Jensen, T. (2008) Structural insight into the function of myelin basic protein as a ligand for integrin alpha M beta 2, J. Immunol. 180, 3946–3956.

    PubMed  CAS  Google Scholar 

  35. Davis, S. J., Ikemizu, S., Wild, M. K., and van der Merwe, P. A. (1998) CD2 and the nature of protein interactions mediating cell-cell recognition, Immunol. Rev. 163, 217–236.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I am indebted to Drs. Timothy A. Springer and Motomu Shimaoka for introducing me to integrin biology and the details of SPR instrumentation. Likewise, I thank Dr. Junichi Takagi for several helpful suggestions and intellectual support on the experimental investigations of integrin–ligand binding. Drs. Peter Schuck and Juraj Svitel kindly provided their MatLab code for SPR data analysis, and helped the initial application of this approach to our data. Dr. Malcolm W. Turner kindly helped the writing of this chapter. This work was supported by grants from the Carlsberg Foundation and LEO Pharma Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Vorup-Jensen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Vorup-Jensen, T. (2011). Surface Plasmon Resonance Biosensing in Studies of the Binding Between β2 Integrin I Domains and Their Ligands. In: Shimaoka, M. (eds) Integrin and Cell Adhesion Molecules. Methods in Molecular Biology, vol 757. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-166-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-166-6_5

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-165-9

  • Online ISBN: 978-1-61779-166-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics