Skip to main content

ARIA for Solution and Solid-State NMR

  • Protocol
  • First Online:
Protein NMR Techniques

Part of the book series: Methods in Molecular Biology ((MIMB,volume 831))

Abstract

In solution or solid-state, determining the three-dimensional structure of biomolecules by Nuclear ­Magnetic Resonance (NMR) normally requires the collection of distance information. The interpretation of the spectra containing this distance information is a critical step in an NMR structure determination. In this chapter, we present the Ambiguous Restraints for Iterative Assignment (ARIA) program for automated cross-peak assignment and determination of macromolecular structure from solution and solid-state NMR experiments. While the program was initially designed for the assignment of nuclear Overhauser effect (NOE) resonances, it has been extended to the interpretation of magic-angle spinning (MAS) solid-state NMR data. This chapter first details the concepts and procedures carried out by the program. Then, we describe both the general strategy for structure determination with ARIA 2.3 and practical aspects of the technique. ARIA 2.3 includes all recent developments. such as an extended integration of the Collaborative Computing Project for the NMR community (CCPN), the incorporation of the log-harmonic distance restraint potential and an automated treatment of symmetric oligomers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wuthrich, K. (1986) NMR of Proteins and Nucleic Acids, Wiley-Interscience New York.

    Google Scholar 

  2. Nilges, M. (1995) Calculation of protein structures with ambiguous distance restraints. Automated assignment of ambiguous NOE crosspeaks and disulphide connectivities. J. Mol. Biol. 245, 645–660.

    CAS  Google Scholar 

  3. Nilges, M. and O’Donoghue, S. I. (1998) Ambiguous NOEs and automated NOESY assignment. Prog. NMR Spec. 32, 107–139.

    Article  CAS  Google Scholar 

  4. Linge, J. P., O’Donoghue, S. I., and Nilges, M. (2001) Automated assignment of ambiguous nuclear overhauser effects with ARIA. Methods Enzymol. 339, 71–90.

    Article  PubMed  CAS  Google Scholar 

  5. Linge, J. P., Habeck, M., Rieping, W., and Nilges, M. (2003) ARIA: automated NOE assignment and NMR structure calculation. Bioinformatics 19, 315–316.

    Article  PubMed  CAS  Google Scholar 

  6. Rieping, W., Habeck, M., Bardiaux, B., Bernard, A., Malliavin, T., and Nilges, M. (2007) ARIA2: automated NOE assignment and data integration in NMR structure calculation. Bioinformatics 23, 381–382.

    Article  PubMed  CAS  Google Scholar 

  7. Castellani, F., van Rossum, B., Diehl, A., Schubert, M., Rehbein, K., and Oschkinat, H. (2002) Structure of a protein determined by solid-state magic-angle-spinning NMR spectroscopy. Nature 420, 98–102.

    Article  PubMed  CAS  Google Scholar 

  8. Herrmann, T., Güntert, P., and Wüthrich, K. (2002) Protein NMR structure determination with automated NOE assignment using the new software CANDID and the torsion angle dynamics algorithm DYANA. J. Mol. Biol. 319, 209–227.

    Article  PubMed  CAS  Google Scholar 

  9. Fossi, M., Castellani, F., Nilges, M., Oschkinat, H., and van Rossum, B. (2005) SOLARIA: a protocol for automated cross-peak assignment and structure calculation for solid-state magic-angle spinning NMR spectroscopy. Angew. Chem. Int. Ed. Engl. 44, 6151–6154.

    Article  PubMed  CAS  Google Scholar 

  10. Loquet, A., Bardiaux, B., Gardiennet, C., Blanchet, C., Baldus, M., Nilges, M., Malliavin, T., and Böckmann, A. (2008) 3D Structure Determination of the Crh Protein from Highly Ambiguous Solid-State NMR Restraints. J. Am. Chem. Soc. 130, 3579–3589.

    Article  PubMed  CAS  Google Scholar 

  11. Manolikas, T., Herrmann, T., and Meier, B. (2008) Protein structure determination from (13)C spin-diffusion solid-state NMR spectroscopy. J. Am. Chem. Soc. 130, 3959–3966.

    Article  PubMed  CAS  Google Scholar 

  12. Wasmer, C., Lange, A., Melckebeke, H. V., Siemer, A., Riek, R., and Meier, B. (2008) Amyloid fibrils of the HET-s(218–289) prion form a beta solenoid with a triangular hydrophobic core. Science 319, 1523–1526.

    Article  PubMed  CAS  Google Scholar 

  13. Bardiaux, B., Bernard, A., Rieping, W., Habeck, M., Malliavin, T. E., and Nilges, M. (2009) Influence of different assignment conditions on the determination of symmetric homodimeric structures with ARIA. Proteins 75, 569–585.

    Article  PubMed  CAS  Google Scholar 

  14. Nilges, M., Bernard, A., Bardiaux, B., Malliavin, T., Habeck, M., and Rieping, W. (2008) Accurate NMR structures through minimisation of an extended hybrid energy. Structure 16, 1305–1312.

    Article  PubMed  CAS  Google Scholar 

  15. van Rossum, G., http://www.python.org/.

  16. Brünger, A. T., Adams, P. D., Clore, G. M., DeLano, W. L., Gros, P., Grosse-Kunstleve, R.  W., Jiang, J.-S., Kuszewski, J., Nilges, M., Pannu, N. S., Read, R. J., Rice, L. M., Simonson, T., and Warren, G. L. (1998) Crystallography and NMR system (CNS): A new software suite for macromolecular structure determination. Acta Cryst. sect. D 54, 905–921.

    Article  Google Scholar 

  17. Vranken, W. F., Boucher, W., Stevens, T. J., Fogh, R. H., Pajon, A., Llinas, M., Ulrich, E. L., Markley, J. L., Ionides, J., and Laue, E. D. (2005) The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins 59, 687–696.

    Article  PubMed  CAS  Google Scholar 

  18. Laskowski, R. A., MacArthur, M. W., Moss, D. S., and Thornton, J. M. (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Cryst. 26, 283–291.

    Article  CAS  Google Scholar 

  19. Vriend, G. (1990) WHAT IF: a molecular modeling and drug design program. J. Mol. Graph. 8, 52–56.

    Article  PubMed  CAS  Google Scholar 

  20. Sippl, M. J. (1993) Recognition of errors in three-dimensional structures of proteins. Proteins Struct. Funct. Genet. 17, 355–362.

    Article  PubMed  CAS  Google Scholar 

  21. Davis, I. W., Leaver-Fay, A., Chen, V. B., Block, J. N., Kapral, G. J., Wang, X., Murray, L. W., Arendall, W. B., Snoeyink, J., Richardson, J. S., and Richardson, D. C. (2007) MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res. 35, W375–383.

    Article  PubMed  Google Scholar 

  22. Folmer, R. H., Hilbers, C. W., Konings, R. N., and Nilges, M. (1997) Floating stereospecific assignment revisited: application to an 18 kDa protein and comparison with J-coupling data. J. Biomol. NMR 9, 245–258.

    Article  PubMed  CAS  Google Scholar 

  23. Duggan, B., Legge, G., Dyson, H., and Wright, P. (2001) SANE (Structure Assisted NOE Evaluation): an automated model-based approach for NOE assignment. J. Biomol. NMR 19, 321–329.

    Article  PubMed  CAS  Google Scholar 

  24. Görler, A. and Kalbitzer, H. R. (1997) Relax, a flexible program for the back calculation of NOESY spectra based on complete relaxation matrix formalism. J. Magn. Reson. 124, 177–188.

    Article  PubMed  Google Scholar 

  25. Linge, J., Habeck, M., Rieping, W., and Nilges, M. (2004) Correction of spin diffusion during iterative automated NOE assignment. J. Magn. Reson. 167, 334–342.

    Article  PubMed  CAS  Google Scholar 

  26. Mumenthaler, C. and Braun, W. (1995) Automated assignment of simulated and experimental NOESY spectra of proteins by feedback filtering and self-correcting distance geometry. J. Mol. Biol. 254, 465–480.

    Article  PubMed  CAS  Google Scholar 

  27. Stein, E. G., Rice, L. M., and Brünger, A. T. (1997) Torsion-angle molecular dynamics as a new efficient tool for NMR structure calculation. J. Magn. Reson. 124, 154–164.

    Article  PubMed  CAS  Google Scholar 

  28. Fossi, M., Oschkinat, F., Nilges, M., and Ball, L. (2005) Quantitative study of the effects of chemical shift tolerances and rates of SA cooling on structure calculation from automatically assigned NOE data. J. Magn. Reson. 175, 92–102.

    Article  PubMed  CAS  Google Scholar 

  29. Rieping, W., Habeck, M., and Nilges, M. (2005) Modeling errors in NOE data with a log-normal distribution improves the quality of NMR structures. J. Am. Chem. Soc. 127, 16026–16027.

    Article  PubMed  CAS  Google Scholar 

  30. Rieping, W., Habeck, M., and Nilges, M. (2005) Inferential Structure Determination. Science 309, 303–306.

    Article  PubMed  CAS  Google Scholar 

  31. Habeck, M., Rieping, W., and Nilges, M. (2006) Weighting of experimental evidence in macromolecular structure determination. Proc. Natl. Acad. Sci. USA 103, 1756–1761.

    Article  PubMed  CAS  Google Scholar 

  32. Nilges, M. (1993) A calculation strategy for the structure determination of symmetric dimers by 1 H NMR. Proteins 17, 297–309.

    Article  PubMed  CAS  Google Scholar 

  33. Linge, J. P., Williams, M. A., Spronk, C. A., Bonvin, A. M., and Nilges, M. (2003) Refinement of protein structures in explicit solvent. Proteins Struct. Funct. Genet. 20, 496–506.

    Article  Google Scholar 

  34. Linge, J. P. and Nilges, M. (1999) Influence of non-bonded parameters on the quality of NMR structures: a new force-field for NMR structure calculation. J. Biomol. NMR 13, 51–59.

    Article  PubMed  CAS  Google Scholar 

  35. Nederveen, A., Doreleijers, J., Vranken, W., Miller, Z., Spronk, C., Nabuurs, S., Guntert, P., Livny, M., Markley, J., Nilges, M., Ulrich, E., Kaptein, R., and Bonvin, A. M. (2005) RECOORD: a REcalculated COORdinates Database of 500+ proteins from the PDB using restraints from the BioMagResBank. Proteins 59, 662–672.

    Article  PubMed  CAS  Google Scholar 

  36. The World Wide Web Consortium (2008), Extensible Markup Language (XML) 1.0 (Fifth Edition), http://www.w3.org/TR/xml/.

  37. Bardiaux, B., Bernard, A., Rieping, W., Habeck, M., Malliavin, T., and Nilges, M. (2008) Graphical analysis of NMR structural quality and interactive contact map of NOE assignments in ARIA. BMC Struct. Biol. 8, 30–34.

    Article  PubMed  Google Scholar 

  38. Spronk, C. A. E. M., Nabuurs, S. B., Krieger, E., Vriend, G., and Vuister, G.W. (2004) Validation of protein structures derived by NMR spectroscopy. Progress in Nuclear Magnetic Resonance Spectroscopy 45, 315–337.

    Article  CAS  Google Scholar 

  39. Saccenti, E. and Rosato, A. (2008) The war of tools: how can NMR spectroscopists detect errors in their structures? J. Biomol. NMR 40, 251–261.

    Article  PubMed  CAS  Google Scholar 

  40. Nabuurs, S., Krieger, E., Spronk, C., Nederveen, A., Vriend, G., and Vuister, G. (2005) Definition of a new information-based per-residue quality parameter. J. Biomol. NMR 33, 123–134.

    Article  PubMed  CAS  Google Scholar 

  41. Nabuurs, S., Spronk, C., Vuister, G., and Vriend, G. (2006) Traditional biomolecular structure determination by NMR spectroscopy allows for major errors. PLoS Comput. Biol. 2, e9.

    Article  PubMed  Google Scholar 

  42. Kraulis, P., Domaille, P. J., Campbell-Burk, S. L., van Aken, T., and Laue, E. D. (1994) Solution structure and dynamics of ras p21.GDP determined by heteronuclear three- and four-dimensional NMR spectroscopy. Biochemistry 33, 3515–3531.

    Article  PubMed  CAS  Google Scholar 

  43. Delaglio, F., Grzesiek, S., Vuister, G.  W., Zhu, G., Pfeifer, J., and Bax, A. (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277–293.

    Article  PubMed  CAS  Google Scholar 

  44. Johnson, B. A. and Blevins, R. A. (1994) NMRView: A computer program for the visualization and analysis of NMR data. J. Biomol. NMR 4, 603–614.

    Article  CAS  Google Scholar 

  45. Garrett, D., Powers, R., Gronenborn, A., and Clore, G. (1991) A common sense approach to peak picking two-, three- and four-dimensional spectra using automatic computer analysis of contour diagrams., J. Magn. Reson. 95, 214–220.

    CAS  Google Scholar 

  46. Kjær, M., Andersen, K. V., and Poulsen, F. M. (1994) Automated and semiautomated analysis of homo- and heteronuclear multidimensional nuclear magnetic resonance spectra of proteins: the program PRONTO. Methods Enzymol. 239, 288–308.

    Article  PubMed  Google Scholar 

  47. Bartels, C., Xia, T.-H., Billeter, M., Güntert, P., and Wüthrich, K. (1995) The program XEASY for computer-supported NMR spectral analysis of biological macromolecules. J. Biomol. NMR 5, 1–10.

    Article  Google Scholar 

  48. Güntert, P., Braun, W., and Wüthrich, K. (1991) Efficient computation of three-dimensional protein structures in solution from nuclear magnetic resonance data using the program DIANA and the supporting programs CALIBA, HABAS and GLOMSA. J. Mol. Biol. 217, 517–530.

    Article  PubMed  Google Scholar 

  49. Hall, S. R. and Cook, A. P. F. (1995) STAR dictionary definition language: Initial specification. J. Chem. Inf. Comput. Sci. 35, 819–825.

    Article  CAS  Google Scholar 

  50. Markley, J. L., Bax, A., Arata, Y., Hilbers, C. W., Kaptein, R., Sykes, B. D., Wright, P. E., and Wüthrich, K. (1998) Recommendations for the presentation of NMR structures of proteins and nucleic acids. J. Mol. Biol. 280, 933–952.

    Article  PubMed  CAS  Google Scholar 

  51. Güntert, P., Mumenthaler, C., and Wütrich, K. (1997) Torsion Angle Dynamics for NMR Strucutre Calculation with the New Program DYANA. J. Mol. Biol. 273, 283–298.

    Article  PubMed  Google Scholar 

  52. Wüthrich, K., Billeter, M., and Braun, W. (1983) Pseudo-structures for the 20 common amino acids for use in studies of protein conformations by measurements of intramolecular proton-proton distance constraints with nuclear magnetic resonance. J Mol Biol 169, 949–961.

    Article  PubMed  Google Scholar 

  53. Lange, A., Luca, S., and Baldus, M. (2002) Structural constraints from proton-mediated rare-spin correlation spectroscopy in rotating solids. J. Am. Chem. Soc. 124, 9704–9705.

    Article  PubMed  CAS  Google Scholar 

  54. Szeverenyi, N., Sullivan, M., and Maciel, G. (1982) Observation of spin exchange by two-dimensional fourier transform 13  C cross polarization-magic-angle spinning. J. Magn. Reson. 47, 462–475.

    CAS  Google Scholar 

  55. Castellani, F., van Rossum, B., Diehl, A., Rehbein, K., and Oschkinat, H. (2003) Determination of solid-state NMR structures of proteins by means of three-dimensional 15 N-13 C-13 C dipolar correlation spectroscopy and chemical shift analysis. Biochemistry 42, 11476–11483.

    Article  PubMed  CAS  Google Scholar 

  56. Takegoshi, K., Nakamura, S., and Terao, T. (2003) 13  C-1  H dipolar-driven 13  C-13  C recoupling without 13  C rf irradiation in nuclear ­magnetic resonance of rotating solids. J. Chem. Phys. 118, 2325–2341.

    Article  CAS  Google Scholar 

  57. Lewandowski, J. R., Paëpe, G. D., Eddy, M. T., and Griffin, R.  G. (2009) (15)N-(15)N proton assisted recoupling in magic angle spinning NMR. J. Am. Chem. Soc. 131, 5769–5776.

    Article  PubMed  CAS  Google Scholar 

  58. Fossi, M., Linge, J., Labudde, D., Leitner, D., Nilges, M., and Oschkinat, H. (2005) Influence of chemical shift tolerances on NMR structure calculations using ARIA protocols for assigning NOE data. J. Biomol. NMR 31, 21–34.

    Article  PubMed  CAS  Google Scholar 

  59. Wishart, D. S. and Sykes, B. D. (1994) The 13  C chemical-shift index: a simple method for the identification of protein secondary structure using 13  C chemical-shift data. J. Biomol. NMR 4, 171–180.

    Article  PubMed  CAS  Google Scholar 

  60. Cornilescu, G., Delaglio, F., and Bax, A. (1999) Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J. Biomol. NMR 13, 289–302.

    Article  PubMed  CAS  Google Scholar 

  61. Cheung, M.-S., Maguire, M. L., Stevens, T. J., and Broadhurst, R. W. (2010) DANGLE: A Bayesian inferential method for predicting protein backbone dihedral angles and secondary structure. J. Magn. Reson. 202, 223–33.

    Article  PubMed  CAS  Google Scholar 

  62. Loquet, A., Gardiennet, C., and Böckmann, A. (2010) Protein 3D structure determination by high-resolution solid-state NMR. Comptes. Rendus - Chimie 13, 423–430.

    Article  CAS  Google Scholar 

  63. Gardiennet, C., Loquet, A., Etzkorn, M., Heise, H., Baldus, M., and Böckmann, A. (2008) Structural constraints for the Crh protein from solid-state NMR experiments. J. Biomol. NMR. 40, 239–250.

    Article  PubMed  CAS  Google Scholar 

  64. LeMaster, D. M. and Kushlan, D. M. (1996) Dynamical mapping of E. coli thioredoxin via 13 C NMR relaxation analysis. J. Am. Chem. Soc. 118, 9255–9264.

    Google Scholar 

  65. Tjandra, N., Garrett, D. S., Gronenborn, A. M., Bax, A., and Clore, G. M. (1997) Defining long range order in NMR structure determination from the dependence of heteronuclear relaxation times on rotational diffusion anisotropy. Nature Struct. Biol. 4, 443–449.

    Article  PubMed  CAS  Google Scholar 

  66. Clore, G., Gronenborn, A., and Bax, A. (1998) A robust method for determining the magnitude of the fully asymmetric alignment tensor of oriented macromolecules in the absence of structural information. J. Magn. Reson. 133, 216–221.

    Article  PubMed  CAS  Google Scholar 

  67. Zweckstetter, M. and Bax, A. (2000) Prediction of sterically induced alignment in a dilute liquid crystalline phase: Aid to protein structure determination by NMR. J. Am. Chem. Soc. 122, 3791–3792.

    Article  CAS  Google Scholar 

  68. Meiler, J., Blomberg, N., Nilges, M., and Griesinger, C. (2000) A new approach for applying residual dipolar couplings as restraints in structure calculations. J. Biomol. NMR 16, 245–252.

    Article  PubMed  CAS  Google Scholar 

  69. Jones, J. P. (2002) PBS: portable batch system, Beowulf cluster computing with Linux, MIT Press, Cambridge, MA, USA, 369–390.

    Google Scholar 

  70. Gentzsch, W. (2001) Sun Grid Engine: Towards creating a compute power grid, CCGRID ’01: Proceedings of the 1st International Symposium on Cluster Computing and the Grid, IEEE Computer Society, Washington, DC, USA, 35.

    Google Scholar 

  71. Thain, D., Tannenbaum, T., and Livny, M. (2005) Distributed computing in practice: the Condor experience. Concurr. Comput.: Pract. Exper. 17, 323–356.

    Google Scholar 

  72. Nabuurs, S., Spronk, C., Krieger, E., Maassen, H., Vriend, G., and Vuister, G. (2003) Quantitative evaluation of experimental NMR restraints. J. Am. Chem. Soc. 125, 12026–12034.

    Article  PubMed  CAS  Google Scholar 

  73. Doreleijers, J. F., Raves, M. L., Rullmann, T., and Kaptein, R. (1999) Completeness of NOEs in protein structure: a statistical analysis of NMR data. J. Biomol. NMR 14, 123–132.

    Article  PubMed  CAS  Google Scholar 

  74. Bhattacharya, A., Tejero, R., and Montelione, G. T. (2007) Evaluating protein structures determined by structural genomics consortia. Proteins 66, 778–795.

    Article  PubMed  CAS  Google Scholar 

  75. Doreleijers, J. F., Vranken, W. F., Schulte, C., Lin, J., Wedell, J. R., Penkett, C. J., Vuister, G. W., Vriend, G., Markley, J. L., and Ulrich, E. L. (2009) The NMR restraints grid at BMRB for 5,266 protein and nucleic acid PDB entries. J. Biomol. NMR 45, 389–396.

    Article  PubMed  CAS  Google Scholar 

  76. Jehle, S., Rajagopal, P., Bardiaux, B., Markovic, S., Kühne, R., Stout, J. R., Higman, V. A., Klevit, R. E., van Rossum, B.-J., and Oschkinat, H. (2010) Solid-state NMR and SAXS studies provide a structural basis for the activation of alphaB-crystallin oligomers. Nat. Struct. Mol. Biol. 17, 1037–1042.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the EU grants SPINE (QLG2-CT-2002-00988) and ExtendNMR (LSHG-CT- 2005–018988). The Ministère de l’Enseignement Supérieur (ACI IMPBio, project ICMD-RMN) and Institut Pasteur are also acknowledged for financial support. The authors would like to thank Wolfgang Rieping, Michael Habeck, Aymeric Bernard, and the CCPN team for their active participation in the development of ARIA, as well as Anja Böckmann and Barth-Jan van Rossum for fruitful collaborations on solid-state NMR. Benjamin Bardiaux thanks Hartmut Oschkinat for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Bardiaux .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Bardiaux, B., Malliavin, T., Nilges, M. (2012). ARIA for Solution and Solid-State NMR. In: Shekhtman, A., Burz, D. (eds) Protein NMR Techniques. Methods in Molecular Biology, vol 831. Humana Press. https://doi.org/10.1007/978-1-61779-480-3_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-480-3_23

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-479-7

  • Online ISBN: 978-1-61779-480-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics