Skip to main content
Log in

The war of tools: how can NMR spectroscopists detect errors in their structures?

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

Protein structure determination by NMR methods has started in the mid-eighties and has been growing steadily since then. Ca. 14% of the protein structures deposited in the PDB have been solved by NMR. The evaluation of the quality of NMR structures however is still lacking a well-established practice. In this work, we examined various tools for the assessment of structural quality to ascertain the extent to which these tools could be applied to detect flaws in NMR structures. In particular, we investigated the variation in the scores assigned by these programs as a function of the deviation of the structures induced by errors in assignments or in the upper distance limits used. These perturbations did not distort radically the protein fold, but resulted in backbone RMS deviations up to 3 Å, which is in line with errors highlighted in the available literature. We found that it is quite difficult to discriminate the structures perturbed because of misassignments from the original ones, also because the spread in score over the conformers of the original bundle is relatively large. ϕ–ψ distributions and normality scores related to the backbone conformation and to the distribution of side-chain dihedral angles are the most sensitive indicators of flaws.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

NMR:

Nuclear magnetic resonance

NOE:

Nuclear Overhauser effect

RMSD:

Root mean standard deviation

References

  • Andrec M, Snyder DA, Zhou Z, Young J, Montelione GT, Levy RM (2007) A large data set comparison of protein structures determined by crystallography and NMR: statistical test for structural differences and the effect of crystal packing. Proteins 69:449–465

    Article  Google Scholar 

  • Banci L, Bertini I Cantini F, Migliardi M, Rosato A, Wang S (2005) An atomic-level investigation of the disease-causing A629P mutant of the Menkes protein, ATP7A. J Mol Biol 352:409–417

    Google Scholar 

  • Barbieri R, Luchinat C, Parigi G (2004) Backbone-only protein solution structures with a combination of classical and paramagnetism-based constraints: a method that can be scaled to large molecules. ChemPhysChem 5(6):797–806

    Article  Google Scholar 

  • Bhattacharya A, Tejero R, Montelione GT (2007) Evaluating protein structures determined by structural genomics consortia. Proteins 66:778–795

    Article  Google Scholar 

  • Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The Protein Data Bank. Nucl Acids Res 28:235–242

    Article  Google Scholar 

  • Bertini I, Cavallaro G, Luchinat C, Poli I (2003) A use of Ramachandran potentials in protein solution structure determinations. J Biomol NMR 4:355–366

    Article  Google Scholar 

  • Bertini I, Donaire A, Jimenez B, Luchinat C, Parigi G, Piccioli M, Poggi L (2001) Paramagnetism-based versus classical constraints: an analysis of the solution structure of Ca Ln calbindin D9k. J Biomol NMR 21:85–98

    Article  Google Scholar 

  • Billeter M (1992) Comparison of protein structures determined by NMR in solution and by X-ray diffraction in single crystals. Q Rev Biophys 25:325–377

    Article  Google Scholar 

  • Branden CI, Jones TA (1990) Between objectivity and subjectivity. Nature 343:687–689

    Article  ADS  Google Scholar 

  • Brown EN, Ramaswamy S (2007) Quality of protein crystal structures. Acta Crystallogr D Biol Crystallogr 63:941–950

    Article  Google Scholar 

  • Brünger AT, Clore GM, Gronenborn AM, Saffrich R, Nilges M (1993) Assessing the quality of solution nuclear magnetic resonance structures by complete cross-validation. Science 261:328–331

    Article  ADS  Google Scholar 

  • Case DA, Darden TA, Cheatham TE, Simmerling CL, Wang J, Duke RE, Luo R, Merz KM, Wang B, Pearlman DA, Crowley M, Brozell S, Tsui V, Gohlke H, Mongan J, Hornak V, Cui G, Beroza P, Schafmeister C, Caldwell JW, Ross WS, Kollman PA (2004) AMBER 8. University of California, San Francisco

    Google Scholar 

  • Clore GM, Robien MA, Gronenborn AM (1993) Exploring the limits of precision and accuracy of protein structures determined by nuclear magnetic resonance spectroscopy. J Mol Biol 231:82–102

    Article  Google Scholar 

  • Cornilescu G, Marquardt JL, Ottiger M, Bax A (1999) Validation of protein structure from anisotropic carbonyl chemical shifts in a dilute liquid crystalline phase. J Am Chem Soc 120:6836–6837

    Article  Google Scholar 

  • Davis IW, Murray LW, Richardson JS, Richardson DC (2007) MOLPROBITY: structure validation and all-atom contact analysis for nucleic acids and their complexes. Nucleic Acids Res 32(Web Server issue):W615–W619

    Google Scholar 

  • DePristo MA, de Bakker PI, Blundell TL (2004) Heterogeneity and inaccuracy in protein structures solved by X-ray crystallography. Structure 12:831–838

    Article  Google Scholar 

  • Doreleijers JF, Rullmann JA, Kaptein R (1998) Quality assessment of NMR structures: a statistical survey. J Mol Biol 281:149–164

    Article  Google Scholar 

  • Doreleijers JF, Mading S, Maziuk D, Sojourner K, Yin L, Zhu J, Markley JL, Ulrich EL (2003) BioMagResBank database with sets of experimental NMR constraints corresponding to the structures of over 1400 biomolecules deposited in the Protein Data Bank. J Biomol NMR 26:139–146

    Article  Google Scholar 

  • Duquesne AE, de Ruijter M, Brouwer J, Drijfhout JW, Nabuurs SB, Spronk CAEM, Vuister GW, Ubbink M, Canters GW (2005) Solution structure of the second PDZ domain of the neuronal adaptor X11alpha and its interaction with the C-terminal peptide of the human copper chaperone for superoxide dismutase. J Biomol NMR 32:209–218

    Article  Google Scholar 

  • Garbuzynskiy SO, Melnik BS, Lobanov MY, Finkelstein AV, Galzitskaya OV (2005) Comparison of X-ray and NMR structures: is there a systematic difference in residue contacts between X-ray- and NMR-resolved protein structures? Proteins 60:139–147

    Article  Google Scholar 

  • Gronwald W, Moussa S, Elsner R, Jung A, Ganslmeier B, Trenner J, Kremer W, Neidig KP, Kalbitzer HR (2002) Automated assignment of NOESY NMR spectra using a knowledge based method (KNOWNOE). J Biomol NMR 23:271–287

    Article  Google Scholar 

  • Güntert P, Mumenthaler C, Wüthrich K (1997) Torsion angle dynamics for NMR structure calculation with the new program DYANA. J Mol Bio 273:283–298

    Article  Google Scholar 

  • Herrmann T, Güntert P, Wüthrich K (2002) Protein NMR structure determination with automated NOE assignment using the new software CANDID and the torsion angle dynamics algorithm DYANA. J Mol Biol 24:209–227

    Article  Google Scholar 

  • Huang YJ, Moseley HN, Baran MC, Arrowsmith C, Powers R, Tejero R, Szyperski T, Montelione G (2005a) An integrated platform for automated analysis of protein NMR structures. Methods Enzymol 394:111–141

    Article  Google Scholar 

  • Huang YJ, Powers R, Montelione GT (2005b) Protein NMR recall, precision, and F-measure scores (RPF scores): structure quality assessment measures based on information retrieval statistics. J Am Chem Soc 127:1665–1674

    Article  Google Scholar 

  • Hooft RWW, Vriend G, Sander C, Abola EE (1996a) Errors in protein structures. Nature 381:272

    Article  ADS  Google Scholar 

  • Hooft RW, Sander C, Vriend G (1996b) Verification of protein structures: side-chain planarity. J Appl Cryst 29:714–716

    Article  Google Scholar 

  • Hooft RWW, Sander C, Vriend G (1997) Objectively judging the quality of a protein structure from a Ramachandran plot. Comput Appl Biosci 13:425–430

    Google Scholar 

  • Joosten RP, Vriend G (2007) PDB improvement starts with data deposition. Science 317:195–196

    Article  Google Scholar 

  • Kleywegt GJ (2000) Validation of proteins crystal structures. Acta Crystallogr D 56:249–265

    Article  Google Scholar 

  • Koradi R, Billeter M, Wüthrich K (1996) MOLMOL: a program for display and analysis of macromolecular structures. J Mol Graph 14:51–55

    Article  Google Scholar 

  • Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structure. J Appl Cryst 26:283–291

    Article  Google Scholar 

  • Laskowski RA, Rullmannn JA, MacArthur MW, Kaptein R, Thornton JM (1996) AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J Biomol NMR 8:477–486

    Article  Google Scholar 

  • Lovell SC, Davis IW, Arendall WB III, de Bakker PIW, Word JM, Prisant MG, Richardson JS, Richardson DC (2003) Structure validation by Cα geometry: φ, ψ, and Cβ deviation. Proteins 50:437–450

    Article  Google Scholar 

  • Markley JL, Bax A, Arata Y, Hilbers CW, Kaptein R, Sykes BD, Wright PE, Wüthrich K (1998) Recommendations for the presentation of NMR structures of proteins and nucleic acids. IUPAC-IUBMB-IUPAB Inter-Union Task Group on the standardization of data bases of protein and nucleic acid structures determined by NMR spectroscopy. J Biomol NMR 12:1–23

    Article  Google Scholar 

  • Morris AL, MacArthur MW, Hutchinson EG, Thornton JM (1992) Stereochemical quality of protein structures coordinates. Proteins 12:345:364

    Article  Google Scholar 

  • Moseley HN, Sahota G, Montelione GT (2004) Assignment validation software suite for the evaluation and presentation of protein resonance assignment data. J Biomol NMR 28:341–355

    Article  Google Scholar 

  • Nabuurs SB, Krieger E, Spronk CA, Nederveen AJ, Vriend G, Vuister GW (2005) Definition of a new information-based per-residue quality parameter. J Biomol NMR 33:123–134

    Article  Google Scholar 

  • Nabuurs SB, Nederveen AJ, Vranken W, Doreleijers JF, Bonvin AM, Vuister GW, Vriend G, Spronk CA (2004) DRESS: a Database of Refined Solution NMR Structures. Proteins 55:483–486

    Article  Google Scholar 

  • Nabuurs SB, Spronk CA, Vuister GW, Vriend G (2006) Traditional biomolecular structure determination by NMR spectroscopy allows for major errors. PLoS Comput Biol 2(2):e9. doi:10.1371/journal.pcbi.0020009

    Article  Google Scholar 

  • Nederveen AJ, Doreleijers JF, Vranken W, Miller Z, Spronk CA, Nabuurs SB, Güntert P, Livny M, Markley JL, Nilges M, Ulrich EL, Kaptein R, Bonvin AM (2005) RECOORD: a recalculated coordinate database of 500+ proteins from the PDB using restraints from the BioMagResBank. Proteins 59:662–672

    Article  Google Scholar 

  • Pugalenthi G, Shameer K, Srinvasan N, Sowdhamini R (2006) HARMONY: a server for the assessment of protein structures. Nucl Acids Res 34(Web Server issue):W231–W234

    Article  Google Scholar 

  • Ramachandran GN, Ramakrishnan C, Sasisekharan V (1963) Stereochemistry of polypeptide chain configuration. J Mol Biol 7:95–99

    Google Scholar 

  • Ramage R, Green J, Muir TW, Ogunjobi OM, Love S, Shaw K (1994) Synthetic, structural and biological studies of the ubiquitin system: the total chemical synthesis of ubiquitin. Biochem J 299:151–158

    Google Scholar 

  • Samudrala R, Moult J (1998) An all-atom distance-dependent conditional probability discriminatory function for protein structure prediction. J Mol Biol 275:895–916

    Article  Google Scholar 

  • Sims GE, Kim S-H (2006) A method for evaluating the structural quality of protein models by using higher-order φ–ψ pairs scoring. Proc Natl Acad Sci USA 103(12):4428–4432

    Article  ADS  Google Scholar 

  • Sippl MJ (1993) Recognition of errors in three-dimensional structures of proteins. Proteins 17:355–362

    Article  Google Scholar 

  • Spronk CA, Linge JP, Hilbers CW, Vuister GW (2002) Improving the quality of protein structures derived by NMR spectroscopy. J Biomol NMR 22:281–289

    Article  Google Scholar 

  • Spronk CA, Nabuurs SB, Bonvin AM, Krieger E, Vuister GW, Vriend G (2003) The precision of NMR structure ensembles revisited. J Biomol NMR 25:225–234

    Article  Google Scholar 

  • Tosatto SCE (2005) The Victor/FRST function for model quality estimation. J Comput Biol 12:1326–1327

    Article  Google Scholar 

  • Tosatto SCE, Battistutta R (2007) TAP score: torsion angle propensity normalization applied to local protein structure evaluation. BMC Bioinformatics 8:155–168

    Article  Google Scholar 

  • van Rossum G, Drake FL (eds) (2001) Python reference manual. PythonLabs, Virginia. Available via www.python.org

  • Vriend G, Sander C (1993) Quality controls of protein models: directional atomic contact analysis. J Appl Cryst 26:47–60

    Article  Google Scholar 

  • Wagner G, Hyberts SG, Havel TF (1992) NMR structure determination in solution: a critique and comparison with X-ray crystallography. Annu Rev Biophys Biomol Struct 21:167–198

    Article  Google Scholar 

  • Wanker WF, Boucher W, Stevens TJ, Fogh RH, Pajon A, Llinas ML, Eldon JL, Ulrich MJI, Ionides J, Laue ED (2005) The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins 59:687–696

    Article  Google Scholar 

  • Wiederstein M, Sippl MJ (2007) ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 35(Web Server issue):W407–W410

    Article  Google Scholar 

Download references

Acknowledgements

This work was stimulated by the activities of the Coordination Action “NMR-Life” (funded by the European Commission, project no. 18758). We thank Prof. Ivano Bertini for many useful discussions. We thank the Ente Cassa di Risparmio di Firenze, the EC (project no. 213010), and MIUR (project PRIN 2005) for financial support. E.S. is the recipient of a fellowship from the FiorGen Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Rosato.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10858_2008_9228_MOESM1_ESM.doc

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saccenti, E., Rosato, A. The war of tools: how can NMR spectroscopists detect errors in their structures?. J Biomol NMR 40, 251–261 (2008). https://doi.org/10.1007/s10858-008-9228-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-008-9228-4

Keywords

Navigation