Skip to main content

Computational Approaches to Metabolomics

  • Protocol
  • First Online:
Bioinformatics Methods in Clinical Research

Part of the book series: Methods in Molecular Biology ((MIMB,volume 593))

Abstract

This chapter is intended to familiarize readers with the field of metabolomics and some of the algorithms, data analysis strategies, and computer programs used to analyze or interpret metabolomic data. Specifically, this chapter provides a brief overview of the experimental approaches and applications of metabolomics followed by a description of the spectral and statistical analysis tools for metabolomics. The chapter concludes with a discussion of the resources that can be used to interpret and analyze metabolomic data at a biological or clinical level. Emerging needs, challenges, and recent progress being made in these areas are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. German JB, Hammock BD, Watkins SM. (2005) Metabolomics: building on a century of biochemistry to guide human health. Metabolomics 1:3–9.

    Article  PubMed  CAS  Google Scholar 

  2. Wishart DS. (2007) Human Metabolome Database: completing the “human parts list.” Pharmacogenomics 8:683–686.

    Article  PubMed  Google Scholar 

  3. Yang J, Xu G, Hong Q, Liebich HM, Lutz K, Schmülling RM, Wahl HG. (2004) Discrimination of Type 2 diabetic patients from healthy controls by using metabonomics method based on their serum fatty acid profiles. J Chromatogr B 813:53–58.

    Article  CAS  Google Scholar 

  4. Williamson MP, Humm G, Crisp AJ. (1989) 1H nuclear magnetic resonance investigation of synovial fluid components in osteoarthritis, rheumatoid arthritis and traumatic effusions. Br J Rheumatol 28:23–27.

    Article  PubMed  CAS  Google Scholar 

  5. Wishart DS, Querengesser LMM, Lefebvre BA, Epstein NA, Greiner R, Newton JB. (2001) Magnetic resonance diagnostics: a new technology for high-throughput clinical diagnostics. Clin Chemistry 47:1918–1921.

    Google Scholar 

  6. Moolenaar SH, Engelke UF, Wevers RA. (2003) Proton nuclear magnetic resonance spectroscopy of body fluids in the field of inborn errors of metabolism. Ann Clin Biochem 40:16–24.

    Article  PubMed  CAS  Google Scholar 

  7. Coen M, O’Sullivan M, Bubb WA, Kuchel PW, Sorrell T. (2005) Proton nuclear magnetic resonance-based metabonomics for rapid diagnosis of meningitis and ventriculitis. Clin Infect Dis 41:1582–1590.

    Article  PubMed  CAS  Google Scholar 

  8. Griffin JL, Bollard ME. (2004) Metabonomics: its potential as a tool in toxicology for safety assessment and data integration. Curr Drug Metab 5:389–398.

    Article  PubMed  CAS  Google Scholar 

  9. Wishart DS. (2005) Metabolomics: the principles and potential applications to transplantation. Am J Transplant 5:2814–2820.

    Article  PubMed  CAS  Google Scholar 

  10. Wishart DS. (2007) Current progress in computational metabolomics. Brief Bioinform 8:279–293.

    Article  PubMed  CAS  Google Scholar 

  11. Coley NG. (2004) Medical chemists and the origins of clinical chemistry in Britain (circa 1750–1850). Clin Chem 50:961–972.

    Article  PubMed  CAS  Google Scholar 

  12. Rosenfeld L. (2001) Clinical chemistry since 1800: growth and development. Clin Chem 48:186–197.

    Google Scholar 

  13. Tietz NW. (1995) Clinical Guide to Laboratory Tests, 3rd ed., WB Saunders Press, Philadelphia, PA.

    Google Scholar 

  14. Dunn WB, Bailey NJ, Johnson HE. (2005) Measuring the metabolome: current analytical technologies. Analyst 130:606–625.

    Article  PubMed  CAS  Google Scholar 

  15. Cotter D, Maer A, Guda C, Saunders B, Subramaniam S. (2006) LMPD: LIPID MAPS proteome database. Nucleic Acids Res 34(Database issue):D507–510.

    Article  PubMed  CAS  Google Scholar 

  16. Wishart DS, Tzur D, Knox C, Eisner R, Guo AC, Young N, Cheng D, Jewell K, Arndt D, Sawhney S, Fung C, Nikolai L, Lewis M, Coutouly MA, Forsythe I, Tang P, Shrivastava S, Jeroncic K, Stothard P, Amegbey G, Block D, Hau DD, Wagner J, Miniaci J, Clements M, Gebremedhin M, Guo N, Zhang Y, Duggan GE, Macinnis GD, Weljie AM, Dowlatabadi R, Bamforth F, Clive D, Greiner R, Li L, Marrie T, Sykes BD, Vogel HJ, Querengesser L. (2007) HMDB: the Human Metabolome Database. Nucleic Acids Res 35(Database issue):D521–526.

    Article  PubMed  CAS  Google Scholar 

  17. Smith CA, O’Maille G, Want EJ, Qin C, Trauger SA, Brandon TR, Custodio DE, Abagyan R, Siuzdak G. (2005) METLIN: a metabolite mass spectral database. Ther Drug Monit 27:747–751.

    Article  PubMed  CAS  Google Scholar 

  18. Saude EJ, Sykes BD. (2007) Urine stability for metabolomic studies: effects of preparation and storage. Metabolomics 3:19–24.

    Article  CAS  Google Scholar 

  19. Beckonert O, Keun HC, Ebbels TM, Bundy J, Holmes E, Lindon JC, Nicholson JK. (2007) Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nat Protoc 2:2692–2703.

    Article  PubMed  CAS  Google Scholar 

  20. Jiye A, Trygg J, Gullberg J, Johansson AI, Jonsson P, Antti H, Marklund SL, Moritz T. (2005) Extraction and GC/MS analysis of the human blood plasma metabolome. Anal Chem 77:8086–8094.

    Article  CAS  Google Scholar 

  21. Schnackenberg LK, Beger RD. (2006) Monitoring the health to disease continuum with global metabolic profiling and systems biology. Pharmacogenomics 7:1077–1086.

    Article  PubMed  CAS  Google Scholar 

  22. German JB, Gillies LA, Smilowitz JT, Zivkovic AM, Watkins SM. (2007) Lipidomics and lipid profiling in metabolomics. Curr Opin Lipidol 18:66–71.

    PubMed  CAS  Google Scholar 

  23. Guo K, Ji C, Li L. (2007) Stable-isotope dimethylation labeling combined with LC-ESI MS for quantification of amine-containing metabolites in biological samples. Anal Chem 79:8631–8638.

    Article  PubMed  CAS  Google Scholar 

  24. Weljie AM, Dowlatabadi R, Miller BJ, Vogel HJ, Jirik FR. (2007) An inflammatory arthritis-associated metabolite biomarker pattern revealed by 1H NMR spectroscopy. J Proteome Res 6:3456–3464.

    Article  PubMed  CAS  Google Scholar 

  25. van der Werf MJ, Overkamp KM, Muilwijk B, Coulier L, Hankemeier T. (2007) Microbial metabolomics: toward a platform with full metabolome coverage. Anal Biochem 370:17–25.

    Article  PubMed  CAS  Google Scholar 

  26. Trygg J, Holmes E, Lundstedt T. (2007) Chemometrics in metabonomics. J Proteome Res 6:469–479.

    Article  PubMed  CAS  Google Scholar 

  27. Weljie AM, Newton J, Mercier P, Carlson E, Slupsky CM. (2006) Targeted profiling: quantitative analysis of 1H NMR metabolomics data. Anal Chem 78: 4430–4442.

    Article  PubMed  CAS  Google Scholar 

  28. Lavine B, Workman JJ, Jr. (2004) Chemometrics. Anal Chem 76:3365–3371.

    Article  PubMed  CAS  Google Scholar 

  29. Wu W, Daszykowski M, Walczak B, Sweatman BC, Connor SC, Haselden JN, Crowther DJ, Gill RW, Lutz MW. (2006) Peak alignment of urine NMR spectra using fuzzy warping. J Chem Inf Model 46:863–875.

    Article  PubMed  CAS  Google Scholar 

  30. Kind T, Tolstikov V, Fiehn O, Weiss RH. (2007) A comprehensive urinary metabolomic approach for identifying kidney cancer. Anal Biochem 363:185–195.

    Article  PubMed  CAS  Google Scholar 

  31. Ding C, He X. (2004) K-means clustering via principal component analysis. Proc of the International Conference on Machine Learning (ICML 2004), pp. 225–232.

    Google Scholar 

  32. Holmes E, Nicholls AW, Lindon JC, Connor SC, Connelly JC, Haselden JN, Damment SJ, Spraul M, Neidig P, Nicholson JK. (2000) Chemometric models for toxicity classification based on NMR spectra of biofluids. Chem Res Toxicol 13:471–478.

    Article  PubMed  CAS  Google Scholar 

  33. Smith IC, Baert R. (2003) Medical diagnosis by high resolution NMR of human specimens. IUBMB Life 55:273–277.

    Article  PubMed  CAS  Google Scholar 

  34. Wilson ID, Plumb R, Granger J, Major H, Williams R, Lenz EM. (2005) HPLC-MS-based methods for the study of metabonomics. J Chromatogr B 817:67–76.

    Article  CAS  Google Scholar 

  35. Molinaro AM, Simon R, Pfeiffer RM. (2005) Prediction error estimation: a comparison of resampling methods. Bioinformatics 21:3301–3307.

    Article  PubMed  CAS  Google Scholar 

  36. Serkova NJ, Rose JC, Epperson LE, Carey HV, Martin SL. (2007) Quantitative analysis of liver metabolites in three stages of the circannual hibernation cycle in 13-lined ground squirrels by NMR. Physiol Genomics 31:15–24.

    Article  PubMed  CAS  Google Scholar 

  37. Niwa T. (1986) Metabolic profiling with gas chromatography-mass spectrometry and its application to clinical medicine. J Chromatogr 379:313–345.

    Article  PubMed  CAS  Google Scholar 

  38. La Marca G, Casetta B, Malvagia S, Pasquini E, Innocenti M, Donati MA, Zammarchi E. (2006) Implementing tandem mass spectrometry as a routine tool for characterizing the complete purine and pyrimidine metabolic profile in urine samples. J Mass Spectrom 41:1442–1452.

    Article  PubMed  CAS  Google Scholar 

  39. Kopka J, Schauer N, Krueger S, Birkemeyer C, Usadel B, Bergmüller E, Dörmann P, Weckwerth W, Gibon Y, Stitt M, Willmitzer L, Fernie AR, Steinhauser D. (2005) GMD@CSB.DB: the Golm Metabolome Database. Bioinformatics 21:1635–1638.

    Article  PubMed  CAS  Google Scholar 

  40. Ulrich EL, Akutsu H, Doreleijers JF, Harano Y, Ioannidis YE, Lin J, Livny M, Mading S, Maziuk D, Miller Z, Nakatani E, Schulte CF, Tolmie DE, Kent Wenger R, Yao H, Markley JL. (2008) BioMagResBank. Nucleic Acids Res 36(Database issue):D402–408.

    PubMed  CAS  Google Scholar 

  41. Rossé G, Neidig P, Schröder H. (2002) Automated structure verification of small molecules libraries using 1D and 2D NMR techniques. Methods Mol Biol 201:123–139.

    PubMed  Google Scholar 

  42. Kind T, Fiehn O. (2007) Seven Golden Rules for heuristic filtering of molecular formulas obtained by accurate mass spectrometry. BMC Bioinformatics 8:105.

    Article  PubMed  CAS  Google Scholar 

  43. Jiang H, Somogyi A, Timmermann BN, Gang DR. (2006) Instrument dependence of electrospray ionization and tandem mass spectrometric fragmentation of the gingerols. Rapid Commun Mass Spectrom 20:3089–3100.

    Article  PubMed  CAS  Google Scholar 

  44. Fardet A, Canlet C, Gottardi G, Lyan B, Llorach R, Rémésy C, Mazur A, Paris A, Scalbert A. (2007) Whole-grain and refined wheat flours show distinct metabolic profiles in rats as assessed by a 1H NMR-based metabonomic approach. J Nutr 137:923–929.

    PubMed  CAS  Google Scholar 

  45. Margalit A, Duffin KL, Isakson PC. (1996) Rapid quantitation of a large scope of eicosanoids in two models of inflammation: development of an electrospray and tandem mass spectrometry method and application to biological studies. Anal Biochem 235:73–81.

    Article  PubMed  CAS  Google Scholar 

  46. Castro IA, Barroso LP, Sinnecker P. (2005) Functional foods for coronary heart disease risk reduction: a meta-analysis using a multivariate approach. Am J Clin Nutr 82:32–40.

    PubMed  CAS  Google Scholar 

  47. Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T, Yamanishi Y. (2008) KEGG for linking genomes to life and the environment. Nucleic Acids Res 36(Database issue):D480–484.

    PubMed  CAS  Google Scholar 

  48. Romero P, Wagg J, Green ML, Kaiser D, Krummenacker M, Karp PD. (2005) Computational prediction of human metabolic pathways from the complete human genome. Genome Biol 6:R2.

    Article  PubMed  Google Scholar 

  49. Vastrik I, D’Eustachio P, Schmidt E, Joshi-Tope G, Gopinath G, Croft D, de Bono B, Gillespie M, Jassal B, Lewis S, Matthews L, Wu G, Birney E, Stein L. (2007) Reactome: a knowledge base of biologic pathways and processes. Genome Biol 8:R39.

    Article  PubMed  CAS  Google Scholar 

  50. Alves R, Antunes F, Salvador A. (2006) Tools for kinetic modeling of biochemical networks. Nat Biotechnol 24:667–672.

    Article  PubMed  CAS  Google Scholar 

  51. Materi W, Wishart DS. (2007) Computational systems biology in drug discovery and development: methods and applications. Drug Discov Today 12:295–303.

    Article  PubMed  CAS  Google Scholar 

  52. Mendes P. (1993) GEPASI: a software package for modelling the dynamics, steady states and control of biochemical and other systems. Comput Appl Biosci 9:563–571.

    PubMed  CAS  Google Scholar 

  53. Kitano H, Funahashi A, Matsuoka Y, Oda K. (2005) Using process diagrams for the graphical representation of biological networks. Nat Biotechnol 23:961–966.

    Article  PubMed  CAS  Google Scholar 

  54. Sauro HM. (1993) SCAMP: a general-purpose simulator and metabolic control analysis program. Comput Appl Biosci 9:441–450.

    PubMed  CAS  Google Scholar 

  55. Shapiro BE, Levchenko A, Meyerowitz EM, Wold BJ, Mjolsness ED. (2003) Cellerator: extending a computer algebra system to include biochemical arrows for signal transduction simulations. Bioinformatics 19:677–678.

    Article  PubMed  CAS  Google Scholar 

  56. Demir O, Aksan Kurnaz I. (2006) An integrated model of glucose and galactose metabolism regulated by the GAL genetic switch. Comput Biol Chem 30:179–192.

    Article  PubMed  CAS  Google Scholar 

  57. Gagneur J, Casari G. (2005) From molecular networks to qualitative cell behavior. FEBS Lett 579:1867–1871.

    Article  PubMed  CAS  Google Scholar 

  58. Joyce AR, Palsson BO. (2007) Toward whole cell modeling and simulation: comprehensive functional genomics through the constraint-based approach. Prog Drug Res 64:267–309.

    Google Scholar 

  59. Kauffman KJ, Prakash P, Edwards JS. (2003) Advances in flux balance analysis. Curr Opin Biotechnol 14:491–496.

    Article  PubMed  CAS  Google Scholar 

  60. Lee JM, Gianchandani EP, Papin JA. (2006) Flux balance analysis in the era of metabolomics. Brief Bioinform 7:140–150.

    Article  PubMed  Google Scholar 

  61. Oliveira AP, Nielsen J, Forster J. (2005) Modeling Lactococcus lactis using a genome-scale flux model. BMC Microbiol5:39.

    Article  PubMed  CAS  Google Scholar 

  62. Jin YS, Jeffries TW. (2004) Stoichiometric network constraints on xylose metabolism by recombinant Saccharomyces cerevisiae. Metab Eng 6:229–238.

    Article  PubMed  CAS  Google Scholar 

  63. Durmus Tekir S, Cakir T, Ulgen KO. (2006) Analysis of enzymopathies in the human red blood cells by constraint-based stoichiometric modeling approaches. Comput Biol Chem 30:327–338.

    Article  PubMed  CAS  Google Scholar 

  64. Luo RY, Liao S, Tao GY, Li YY, Zeng S, Li YX, Luo Q. (2006) Dynamic analysis of optimality in myocardial energy metabolism under normal and ischemic conditions. Mol Syst Biol 2:2006.0031.

    Article  PubMed  Google Scholar 

  65. Duarte NC, Becker SA, Jamshidi N, Thiele I, Mo ML, Vo TD, Srivas R, Palsson BØ. (2007) Global reconstruction of the human metabolic network based on genomic and bibliomic data. Proc Natl Acad Sci USA 104:1777–1782.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Wishart, D.S. (2010). Computational Approaches to Metabolomics. In: Matthiesen, R. (eds) Bioinformatics Methods in Clinical Research. Methods in Molecular Biology, vol 593. Humana Press. https://doi.org/10.1007/978-1-60327-194-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-194-3_14

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-193-6

  • Online ISBN: 978-1-60327-194-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics