Skip to main content
Log in

Urine stability for metabolomic studies: effects of preparation and storage

  • Published:
Metabolomics Aims and scope Submit manuscript

Metabolomic studies attempt to identify and profile unique metabolic differences among test populations, which may be correlated with a specific biological stress or pathophysiology. Due to the ease of collection and the metabolite-rich nature of urine, it is frequently used as a bio-fluid for human and animal metabolic studies. High-resolution 1H-NMR is an analytical tool used to qualitatively and quantitatively identify metabolites in urine. Urine samples were collected from healthy male and female subjects and prepared: raw, following centrifugation, filtration, or the addition of the bacteriostatic preservative sodium azide and analyzed by NMR. In addition, these samples were stored at room temperature (22 °C), in a refrigerator (4 °C), or in a deep-freeze (−80 °C). Samples were analyzed by NMR every week for a month and changes in concentrations of 55 easily identifiable metabolites were followed. The degree of change in metabolite concentrations following storage over a 4-week period were influenced by the different methods of sample preparation and storage. Significant changes in urine metabolites are likely due to bacterial contamination of the urine. Our study demonstrates that bacterial contamination of urine in normal individuals significantly alters the metabolic profile of urine over time and proper preparation and storage procedures must be followed to reduce these changes. By identifying appropriate methods of urine preparation and storage investigators will preserve the fidelity of the urine samples in order to better reflect the original metabolic state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.

Similar content being viewed by others

References

  • Allen T.A., Jones R.L., Purvance J., (1987) Microbiologic evaluation of canine urine: direct microscopic examination and preservation of specimen quality for culture J. Am. Vet. Med. Assoc. 190: 1289–1291

    PubMed  CAS  Google Scholar 

  • Armstrong M.D., Shaw K.N., Wall P.E., (1956) The phenolic acids of human urine; paper chromatography of phenolic acids J. Biol. Chem. 218: 293–303

    PubMed  CAS  Google Scholar 

  • Bain M.D., Jones M., Borriello S.P., Reed P.J., Tracey B.M., Chalmers R.A., Stacey T.E., (1988) Contribution of gut bacterial metabolism to human metabolic disease Lancet 1: 1078–1079

    Article  PubMed  CAS  Google Scholar 

  • Bar-Meir M., Raveh D., Yinnon A.M., Benenson S., Rudensky B., Schlesinger Y., (2005) Non-Typhi Salmonella gastroenteritis in children presenting to the emergency department: characteristics of patients with associated bacteraemia Clin. Microbiol. Infect. 11: 651–655

    Article  PubMed  CAS  Google Scholar 

  • Bollard M.E., Stanley E.G., Lindon J.C., Nicholson J.K., Holmes E., (2005) NMR-based metabonomic approaches for evaluating physiological influences on biofluid composition NMR Biomed. 18: 143–162

    Article  PubMed  CAS  Google Scholar 

  • Brenner D.J., Mcwhorter A.C., Kai A., Steigerwalt A.G., Farmer J.J. 3rd (1986) Enterobacter asburiae sp. nov., a new species found in clinical specimens, and reassignment of Erwinia dissolvens and Erwinia nimipressuralis to the genus Enterobacter as Enterobacter dissolvens comb. nov. and Enterobacter nimipressuralis comb. nov J. Clin. Microbiol. 23: 1114–1120

    PubMed  CAS  Google Scholar 

  • Brewster M.A., Schedewie H., (1983) Trimethylaminuria Ann. Clin. Lab. Sci. 13: 20–24

    PubMed  CAS  Google Scholar 

  • Brindle J.T., Antti H., Holmes E., Tranter G., Nicholson J.K., Bethell H.W., Clarke S., Schofield P.M., Mckilligin E., Mosedale D.E., Grainger D.J., (2002) Rapid and noninvasive diagnosis of the presence and severity of coronary heart disease using 1H-NMR-based metabolomics Nat. Med. 8: 1439–1444

    Article  PubMed  CAS  Google Scholar 

  • Cattell W.R., Sardeson J.M., Hutchinson E., O’grady F., (1969) Creatinine content of urine and bacterial growth Br. Med. J. 3: 175–176

    Article  PubMed  CAS  Google Scholar 

  • Chadha V., Garg U., Alon U.S., (2001) Measurement of urinary concentration: a critical appraisal of methodologies Pediatr. Nephrol. 16: 374–382

    Article  PubMed  CAS  Google Scholar 

  • Chambers S.T., Peddie B.A., Randall K., Lever M., (1999) Inhibitors of bacterial growth in urine: what is the role of betaines? Int. J. Antimicrob. Agents 11: 293–296

    Article  PubMed  CAS  Google Scholar 

  • Coen M., O’sullivan M., Bubb W.A., Kuchel P.W., Sorrell T., (2005) Proton nuclear magnetic resonance-based metabonomics for rapid diagnosis of meningitis and ventriculitis Clin Infect Dis 41: 1582–1590

    Article  PubMed  CAS  Google Scholar 

  • D’Argenio G., Mazzacca G., (1999) Short-chain fatty acid in the human colon. Relation to inflammatory bowel diseases and colon cancer Adv. Exp. Med. Biol. 472: 149–158

    PubMed  CAS  Google Scholar 

  • Dunn W.B., Bailey N.J., Johnson H.E., (2005) Measuring the metabolome: current analytical technologies Analyst 130: 606–625

    Article  PubMed  CAS  Google Scholar 

  • Dyer A., Elliott P., Chee D., Stamler J., (1997) Urinary biochemical markers of dietary intake in the INTERSALT study Am. J. Clin. Nutr. 65: 1246S–1253S

    PubMed  CAS  Google Scholar 

  • Funfstuck R., Stein G., Fuchs M., Bergner M., Wessel G., Keil E., Suss J., (1987) The influence of selected urinary constituents on the adhesion process of Escherichia coli to human uroepithelial cells Clin. Nephrol. 28: 244–9

    PubMed  CAS  Google Scholar 

  • Goodwin B.L., Ruthven C.R., Sandler M., (1994) Gut flora and the origin of some urinary aromatic phenolic compounds Biochem. Pharmacol. 47: 2294–7

    Article  PubMed  CAS  Google Scholar 

  • Griffith D.P., Musher D.M., Itin C., (1976) Urease. The primary cause of infection-induced urinary stones Invest. Urol. 13: 346–50

    PubMed  CAS  Google Scholar 

  • Griffiths L., Irwing A.M. (1998) Assay by nuclear magnetic resonance spectroscopy: quantification limits Analyst 123: 1061–1068

    Article  CAS  Google Scholar 

  • Guneral F., Bachmann C., (1994) Age-related reference values for urinary organic acids in a healthy Turkish pediatric population Clin Chem 40: 862–866

    PubMed  CAS  Google Scholar 

  • Hansen S., Perry T.L., Lesk D., Gibson L., (1972) Urinary bacteria: potential source of some organic acidurias Clin Chim Acta 39: 71–74

    Article  PubMed  CAS  Google Scholar 

  • Holmes E., Nicholls A.W., Lindon J.C., Connor S.C., Connelly J.C., Haselden J.N., Damment S.J., Spraul M., Neidig P., Nicholson J.K., (2000) Chemometric models for toxicity classification based on NMR spectra of biofluids Chem Res Toxicol 13: 471–478

    Article  PubMed  CAS  Google Scholar 

  • Hoult D.I., (1976) Solvent peak saturation with single phase and quadrature Fourier transformation J. Magn. Reson. 21: 337–347

    CAS  Google Scholar 

  • Jones J.D., Burnett P.C., (1972) Implication of creatinine and gut flora in the uremic syndrome: induction of “creatininase” in colon contents of the rat by dietary creatinine Clin Chem 18: 280–284

    PubMed  CAS  Google Scholar 

  • Kaya S., Poyraz O., Gokce G., Kilicarslan H., Kaya K., Ayan S., (2003) Role of genital mycoplasmata and other bacteria in urolithiasis Scand. J. Infect. Dis. 35: 315–317

    Article  PubMed  Google Scholar 

  • Kaye D., (1968) Antibacterial activity of human urine J. Clin. Invest. 47: 2374–2390

    PubMed  CAS  Google Scholar 

  • Lenz E.M., Bright J., Wilson I.D., Hughes A., Morrisson J., Lindberg H., Lockton A., (2004) Metabonomics, dietary influences and cultural differences: a 1H NMR-based study of urine samples obtained from healthy British and Swedish subjects J. Pharm. Biomed. Anal. 36: 841–849

    Article  PubMed  CAS  Google Scholar 

  • Lenz E.M., Bright J., Wilson I.D., Morgan S.R., Nash A.F., (2003) A 1H NMR-based metabonomic study of urine and plasma samples obtained from healthy human subjects J. Pharm. Biomed. Anal. 33: 1103–1115

    Article  PubMed  CAS  Google Scholar 

  • Lindon J.C., Holmes E., Bollard M.E., Stanley E.G., Nicholson J.K., (2004) Metabonomics technologies and their applications in physiological monitoring, drug safety assessment and disease diagnosis Biomarkers 9: 1–31

    Article  PubMed  CAS  Google Scholar 

  • Lutsar I., Gontmacher A., Narska M., Ruutel V., Topman M., Ilves P., Siirde T., Beilmann A., (1995) Five days of antibacterial therapy for bacterial meningitis in children? Infection 23: 113–118

    Article  PubMed  CAS  Google Scholar 

  • Macfarlane S., Macfarlane G.T., (2003) Regulation of short-chain fatty acid production Proc Nutr Soc 62: 67–72

    Article  PubMed  CAS  Google Scholar 

  • Moolenaar S.H., Engelke U., Wevers R.A. (2003) Proton nuclear magnetic resonance spectroscopy of body fluids in the field of inborn errors of metabolism Ann Clin Biochem 40: 16–24

    Article  PubMed  CAS  Google Scholar 

  • Nazifi S., Rezakhani A., Badran M., (1997) Evaluation of hematological, serum biochemical and cerebrospinal fluid parameters in experimental bacterial meningitis in the calf Zentralbl Veterinarmed A 44: 55–63

    PubMed  CAS  Google Scholar 

  • Nicholls A.W., Mortishire-Smith R.J., Nicholson J.K., (2003) NMR spectroscopic-based metabonomic studies of urinary metabolite variation in acclimatizing germ-free rats Chem. Res. Toxicol. 16: 1395–1404

    Article  PubMed  CAS  Google Scholar 

  • Nickander K.K., Shanholtzer C.J., Peterson L.R., (1982) Urine culture transport tubes: effect of sample volume on bacterial toxicity of the preservative J. Clin. Microbiol. 15: 593–595

    PubMed  CAS  Google Scholar 

  • Pathak C.M., Bhasin D.K., Khanduja K.L., (2004a) Urea breath test for Helicobacter pylori detection: present status Trop. Gastroenterol. 25: 156–161

    CAS  Google Scholar 

  • Pathak C.M., Bhasin D.K., Pramod K.A., Khanduja K.L., (2004b) 14C-urea breath test as a ‘gold standard’ for detection of Helicobacter pylori infection Med Sci Monit 10: LE14–LE15

    Google Scholar 

  • Peddie B.A., Chambers S.T., Lever M., (1996) Is the ability of urinary tract pathogens to accumulate glycine betaine a factor in the virulence of pathogenic strains? J. Lab. Clin. Med. 128: 417–422

    Article  PubMed  CAS  Google Scholar 

  • Sabatine M.S., Liu E., Morrow D.A., Heller E., Mccarroll R., Wiegand R., Berriz G.F., Roth F.P., Gerszten R.E., (2005) Metabolomic identification of novel biomarkers of myocardial ischemia Circulation 112: 3868–3875

    Article  PubMed  CAS  Google Scholar 

  • Schiwara H.W., Siegel H., Goebel A., (1992) Increase and decrease in formic acid concentration in urine samples stored at room temperature Eur. J. Clin. Chem. Clin. Biochem. 30: 75–79

    PubMed  CAS  Google Scholar 

  • Stenina M.A., Voevodin D.A., Stakhanov V.D., Kisilevich O.N., Rozanova G.N., (2003) Tissue hypoxia and intestinal dysbiosis in children with tuberculosis Bull. Exp. Biol. Med. 135: 178–180

    Article  PubMed  CAS  Google Scholar 

  • Symanski E., Greeson N.M., (2002) Assessment of variability in biomonitoring data using a large database of biological measures of exposure AIHA J (Fairfax Va) 63: 390–401

    CAS  Google Scholar 

  • Tal S., Guller V., Levi S., Bardenstein R., Berger D., Gurevich I., Gurevich A., (2005) Profile and prognosis of febrile elderly patients with bacteremic urinary tract infection J. Infect. 50: 296–305

    Article  PubMed  Google Scholar 

  • Tate A.R., Damment S.J., Lindon J.C., (2001) Investigation of the metabolite variation in control rat urine using 1H NMR spectroscopy Anal. Biochem. 291: 17–26

    Article  PubMed  CAS  Google Scholar 

  • Udert K.M., Larsen T.A., Biebow M., Gujer W., (2003a) Urea hydrolysis and precipitation dynamics in a urine-collecting system Water. Res. 37: 2571–2582

    Article  CAS  Google Scholar 

  • Udert K.M., Larsen T.A., Gujer W., (2003b) Estimating the precipitation potential in urine-collecting systems Water Res. 37: 2667–2677

    Article  CAS  Google Scholar 

  • Utine G.E., Ozcelik U., Yalcin E., Dogru D., Kiper N., Aslan A., Kanra G., (2005) Childhood parapneumonic effusions: biochemical and inflammatory markers Chest 128: 1436–1441

    Article  PubMed  CAS  Google Scholar 

  • Weckwerth W., Morgenthal K., (2005) Metabolomics: from pattern recognition to biological interpretation Drug Discov. Today 10: 1551–1558

    Article  PubMed  CAS  Google Scholar 

  • Zeisel S.H., Dacosta K.A., Fox J.G., (1985) Endogenous formation of dimethylamine Biochem. J. 232: 403–408

    PubMed  CAS  Google Scholar 

  • Zeisel S.H., Dacosta K.A., Youssef M., Hensey S., (1989) Conversion of dietary choline to trimethylamine and dimethylamine in rats: dose–response relationship J. Nutr. 119: 800–804

    PubMed  CAS  Google Scholar 

  • Zuppi C., Messana I., Forni F., Rossi C., Pennacchietti L., Ferrari F., Giardina B., (1997) 1H NMR spectra of normal urines: reference ranges of the major metabolites Clin Chim Acta 265: 85–97

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Canadian Institutes of Health Research, Genome Prairie, Genome Canada, the Natural Science and Engineering Research Council of Canada, and the University of Alberta.

The authors would like to thank Angela Thiessen for her assistance in sample preparation. We would also like to thank Carolyn Slupsky for her helpful discussions. This research was supported by the Canadian Institues of Health Research (CIHR), Genome Prairie, and Genome Canada. We would like to thank the Canadian National High Field NMR Centre (NANUC) for their assistance and use of the facilities. Operation of NANUC is funded by CIHR, the Natural Science and Engineering Research Council of Canada and the University of Alberta.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian D. Sykes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saude, E.J., Sykes, B.D. Urine stability for metabolomic studies: effects of preparation and storage. Metabolomics 3, 19–27 (2007). https://doi.org/10.1007/s11306-006-0042-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-006-0042-2

Keywords

Navigation