Skip to main content

Quantitative Efferocytosis Assays

  • Protocol
  • First Online:
Phagocytosis and Phagosomes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1519))

Abstract

Efferocytosis, the phagocytic removal of apoptotic cells, is a dynamic process requiring recruitment of numerous regulatory proteins to forming efferosomes in a tightly regulated manner. Herein we describe microscopy-based methods for the enumeration of efferocytic events and characterization of the spatiotemporal dynamics of signaling molecule recruitment to efferosomes, using genetically encoded probes and immunofluorescent labeling. While these methods are illustrated using macrophages, they are applicable to any efferocytic cell type.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35:495–516. doi:10.1080/01926230701320337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wallach D, Kang T-B, Rajput A et al (2010) Anti-inflammatory functions of the “apoptotic” caspases. Ann N Y Acad Sci 1209:17–22. doi:10.1111/j.1749-6632.2010.05742.x

    Article  CAS  PubMed  Google Scholar 

  3. Wickman G, Julian L, Olson MF (2012) How apoptotic cells aid in the removal of their own cold dead bodies. Cell Death Differ 19:735–742. doi:10.1038/cdd.2012.25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Eligini S, Crisci M, Bono E et al (2012) Human monocyte-derived macrophages spontaneously differentiated in vitro show distinct phenotypes. J Cell Physiol. doi:10.1002/jcp.24301

    PubMed  Google Scholar 

  5. Heo K-S, Cushman HJ, Akaike M et al (2014) ERK5 activation in macrophages promotes efferocytosis and inhibits atherosclerosis. Circulation 130:180–191. doi:10.1161/CIRCULATIONAHA.113.005991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Thorp E, Cui D, Schrijvers DM et al (2008) Mertk receptor mutation reduces efferocytosis efficiency and promotes apoptotic cell accumulation and plaque necrosis in atherosclerotic lesions of apoe-/- mice. Arterioscler Thromb Vasc Biol 28:1421–1428. doi:10.1161/ATVBAHA.108.167197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Thorp EB (2010) Mechanisms of failed apoptotic cell clearance by phagocyte subsets in cardiovascular disease. Apoptosis 15:1124–1136. doi:10.1007/s10495-010-0516-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wigren M, Nilsson J, Kaplan MJ (2015) Pathogenic immunity in systemic lupus erythematosus and atherosclerosis: common mechanisms and possible targets for intervention. J Intern Med 278:494–506. doi:10.1111/joim.12357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kimani SG, Geng K, Kasikara C et al (2014) Contribution of defective PS recognition and efferocytosis to chronic inflammation and autoimmunity. Front Immunol 5:566. doi:10.3389/fimmu.2014.00566

    Article  PubMed  PubMed Central  Google Scholar 

  10. Recarte-Pelz P, Tàssies D, Espinosa G et al (2013) Vitamin K-dependent proteins GAS6 and Protein S and TAM receptors in patients of systemic lupus erythematosus: correlation with common genetic variants and disease activity. Arthritis Res Ther 15:R41. doi:10.1186/ar4199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Peter C, Waibel M, Radu CG et al (2008) Migration to apoptotic “find-me” signals is mediated via the phagocyte receptor G2A. J Biol Chem 283:5296–5305. doi:10.1074/jbc.M706586200

    Article  CAS  PubMed  Google Scholar 

  12. Qingxian L, Qiutang L, Qingjun L (2010) Regulation of phagocytosis by TAM receptors and their ligands. Front Biol (Beijing) 5:227–237

    Article  Google Scholar 

  13. Savill J, Hogg N, Ren Y, Haslett C (1992) Thrombospondin cooperates with CD36 and the vitronectin receptor in macrophage recognition of neutrophils undergoing apoptosis. J Clin Invest 90:1513–1522. doi:10.1172/JCI116019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wu Y, Singh S, Georgescu M-M, Birge RB (2005) A role for Mer tyrosine kinase in alphavbeta5 integrin-mediated phagocytosis of apoptotic cells. J Cell Sci 118:539–553. doi:10.1242/jcs.01632

    Article  CAS  PubMed  Google Scholar 

  15. Nandrot EF, Anand M, Almeida D et al (2007) Essential role for MFG-E8 as ligand for alphavbeta5 integrin in diurnal retinal phagocytosis. Proc Natl Acad Sci U S A 104:12005–12010. doi:10.1073/pnas.0704756104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kinchen JM, Doukoumetzidis K, Almendinger J et al (2008) A pathway for phagosome maturation during engulfment of apoptotic cells. Nat Cell Biol 10:556–566. doi:10.1038/ncb1718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ichimura T, Asseldonk EJPV, Humphreys BD et al (2008) Kidney injury molecule-1 is a phosphatidylserine receptor that confers a phagocytic phenotype on epithelial cells. J Clin Invest 118:1657–1668. doi:10.1172/JCI34487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ravichandran KS (2010) Find-me and eat-me signals in apoptotic cell clearance: progress and conundrums. J Exp Med 207:1807–1817. doi:10.1084/jem.20101157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Suzuki J, Umeda M, Sims PJ, Nagata S (2010) Calcium-dependent phospholipid scrambling by TMEM16F. Nature 468:834–838. doi:10.1038/nature09583

    Article  CAS  PubMed  Google Scholar 

  20. Fadeel B (2004) Plasma membrane alterations during apoptosis: role in corpse clearance. Antioxid Redox Signal 6:269–275. doi:10.1089/152308604322899332

    Article  CAS  PubMed  Google Scholar 

  21. Leffell MS, Spitznagel JK (1975) Fate of human lactoferrin and myeloperoxidase in phagocytizing human neutrophils: effects of immunoglobulin G subclasses and immune complexes coated on latex beads. Infect Immun 12:813–820

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Yeung T, Heit B, Dubuisson J-F et al (2009) Contribution of phosphatidylserine to membrane surface charge and protein targeting during phagosome maturation. J Cell Biol 185:917–928. doi:10.1083/jcb.200903020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Flannagan RS, Harrison RE, Yip CM et al (2010) Dynamic macrophage “probing” is required for the efficient capture of phagocytic targets. J Cell Biol 191:1205–1218. doi:10.1083/jcb.201007056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhou D, Huang C, Lin Z et al (2014) Macrophage polarization and function with emphasis on the evolving roles of coordinated regulation of cellular signaling pathways. Cell Signal 26:192–197. doi:10.1016/j.cellsig.2013.11.004

    Article  CAS  PubMed  Google Scholar 

  25. Vaux DL, Fidler F, Cumming G (2012) Replicates and repeats-what is the difference and is it significant? A brief discussion of statistics and experimental design. EMBO Rep 13:291–296. doi:10.1038/embor.2012.36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bolte S, Cordelières FP (2006) A guided tour into subcellular colocalization analysis in light microscopy. J Microsc 224:213–232. doi:10.1111/j.1365-2818.2006.01706.x

    Article  CAS  PubMed  Google Scholar 

  27. Nayak BK, Hazra A (2011) How to choose the right statistical test? Indian J Ophthalmol 59:85–86. doi:10.4103/0301-4738.77005

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bryan Heit .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Evans, A.L., Blackburn, J.W.D., Yin, C., Heit, B. (2017). Quantitative Efferocytosis Assays. In: Botelho, R. (eds) Phagocytosis and Phagosomes. Methods in Molecular Biology, vol 1519. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6581-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6581-6_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6579-3

  • Online ISBN: 978-1-4939-6581-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics