Skip to main content

Advertisement

Log in

Mechanisms of failed apoptotic cell clearance by phagocyte subsets in cardiovascular disease

  • Apoptosis in the Aging Brain
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Recent evidence in humans indicate that defective phagocytic clearance of dying cells is linked to progression of advanced atherosclerotic lesions, the precursor to atherothrombosis, ischemic heart disease, and leading cause of death in the industrialized world. During atherogenesis, apoptotic cell turnover in the vascular wall is counterbalanced by neighboring phagocytes with high clearance efficiency, thereby limiting cellularity and maintaining lesion integrity. However, as lesions mature, phagocytic removal of apoptotic cells (efferocytosis) becomes defective, leading to secondary necrosis, expansion of plaque necrotic cores, and susceptibility to rupture. Recent genetic causation studies in experimental rodents have implicated key molecular regulators of efferocytosis in atherosclerotic progression. These include MER tyrosine kinase (MERTK), milk fat globule-EGF factor 8 (MFGE8), and complement C1q. At the cellular level, atheromata are infiltrated by a heterogenous population of professional phagocytes, comprised of monocytes, differentiated macrophages, and CD11c+ dendritic-like cells. Each cell type is characterized by disparate clearance efficiencies and varying activities of key phagocytic signaling molecules. It is in this context that we outline a working model whereby plaque necrosis and destabilization is jointly promoted by (1) direct inhibition of core phagocytic signaling pathways and (2) expansion of phagocyte subsets with poor clearance capacity. Towards identifying targets for promoting efficient apoptotic cell clearance and resolving inflammation in atherosclerosis and during ischemic heart disease and post myocardial infarction, this review will discuss potential in vivo suppressors of efferocytosis at each stage of clearance and how these putative interventional targets may differentially affect uptake at the level of vascular phagocyte subsets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Libby P, Nahrendorf M, Pittet MJ, Swirski FK (2008) Diversity of denizens of the atherosclerotic plaque: not all monocytes are created equal. Circulation 117:3168–3170

    Article  PubMed  Google Scholar 

  2. Williams KJ, Tabas I (1995) The response-to-retention hypothesis of early atherogenesis. Arterioscler Thromb Vasc Biol 15:551–561

    CAS  PubMed  Google Scholar 

  3. Tabas I (2004) Apoptosis and plaque destabilization in atherosclerosis: the role of macrophage apoptosis induced by cholesterol. Cell Death Differ 11(1):S12–S16

    Article  CAS  PubMed  Google Scholar 

  4. Gregory C (2009) Cell biology: sent by the scent of death. Nature 461:181–182

    Article  CAS  PubMed  Google Scholar 

  5. Henson PM (2005) Dampening inflammation. Nat Immunol 6:1179–1181

    Article  CAS  PubMed  Google Scholar 

  6. Virmani R, Burke AP, Kolodgie FD, Farb A (2002) Vulnerable plaque: the pathology of unstable coronary lesions. J Interv Cardiol 15:439–446

    Article  PubMed  Google Scholar 

  7. Frangogiannis NG (2008) The immune system and cardiac repair. Pharmacol Res 58:88–111

    Article  CAS  PubMed  Google Scholar 

  8. Tabas I (2005) Consequences and therapeutic implications of macrophage apoptosis in atherosclerosis: the importance of lesion stage and phagocytic efficiency. Arterioscler Thromb Vasc Biol 25:2255–2264

    Article  CAS  PubMed  Google Scholar 

  9. Schrijvers DM, De Meyer GR, Kockx MM, Herman AG, Martinet W (2005) Phagocytosis of apoptotic cells by macrophages is impaired in atherosclerosis. Arterioscler Thromb Vasc Biol 25:1256–1261

    Article  CAS  PubMed  Google Scholar 

  10. Swirski FK, Pittet MJ, Kircher MF, Aikawa E, Jaffer FA, Libby P, Weissleder R (2006) Monocyte accumulation in mouse atherogenesis is progressive and proportional to extent of disease. Proc Natl Acad Sci USA 103:10340–10345

    Article  CAS  PubMed  Google Scholar 

  11. Frostegard J, Haegerstrand A, Gidlund M, Nilsson J (1991) Biologically modified LDL increases the adhesive properties of endothelial cells. Atherosclerosis 90:119–126

    Article  CAS  PubMed  Google Scholar 

  12. Lauber K, Bohn E, Krober SM, Xiao YJ, Blumenthal SG, Lindemann RK, Marini P, Wiedig C, Zobywalski A, Baksh S, Xu Y, Autenrieth IB, Schulze-Osthoff K, Belka C, Stuhler G, Wesselborg S (2003) Apoptotic cells induce migration of phagocytes via caspase-3-mediated release of a lipid attraction signal. Cell 113:717–730

    Article  CAS  PubMed  Google Scholar 

  13. Gautier EL, Huby T, Witztum JL, Ouzilleau B, Miller ER, Saint-Charles F, Aucouturier P, Chapman MJ, Lesnik P (2009) Macrophage apoptosis exerts divergent effects on atherogenesis as a function of lesion stage. Circulation 119:1795–1804

    Article  CAS  PubMed  Google Scholar 

  14. Nahrendorf M, Swirski FK, Aikawa E, Stangenberg L, Wurdinger T, Figueiredo JL, Libby P, Weissleder R, Pittet MJ (2007) The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J Exp Med 204:3037–3047

    Article  CAS  PubMed  Google Scholar 

  15. Bournazou I, Pound JD, Duffin R, Bournazos S, Melville LA, Brown SB, Rossi AG, Gregory CD (2009) Apoptotic human cells inhibit migration of granulocytes via release of lactoferrin. J Clin Invest 119:20–32

    CAS  PubMed  Google Scholar 

  16. Peter C, Wesselborg S, Herrmann M, Lauber K (2010) Dangerous attraction: phagocyte recruitment and danger signals of apoptotic and necrotic cells. Apoptosis. doi:10.1007/s10495-010-0472-1

  17. Gregory CD, Jean-Charles L (2010) Microenvironemental influences of apoptosis in vivo and in vitro. Apoptosis. doi: 10.1007/s10495-010-0485-9

  18. Moodley Y, Rigby P, Bundell C, Bunt S, Hayashi H, Misso N, McAnulty R, Laurent G, Scaffidi A, Thompson P, Knight D (2003) Macrophage recognition and phagocytosis of apoptotic fibroblasts is critically dependent on fibroblast-derived thrombospondin 1 and CD36. Am J Pathol 162:771–779

    CAS  PubMed  Google Scholar 

  19. Truman LA, Ford CA, Pasikowska M, Pound JD, Wilkinson SJ, Dumitriu IE, Melville L, Melrose LA, Ogden CA, Nibbs R, Graham G, Combadiere C, Gregory CD (2008) CX3CL1/fractalkine is released from apoptotic lymphocytes to stimulate macrophage chemotaxis. Blood 112:5026–5036

    Article  CAS  PubMed  Google Scholar 

  20. Wakasugi K, Schimmel P (1999) Two distinct cytokines released from a human aminoacyl-tRNA synthetase. Science 284:147–151

    Article  CAS  PubMed  Google Scholar 

  21. Horino K, Nishiura H, Ohsako T, Shibuya Y, Hiraoka T, Kitamura N, Yamamoto T (1998) A monocyte chemotactic factor, S19 ribosomal protein dimer, in phagocytic clearance of apoptotic cells. Lab Invest 78:603–617

    CAS  PubMed  Google Scholar 

  22. Peter C, Waibel M, Radu CG, Yang LV, Witte ON, Schulze-Osthoff K, Wesselborg S, Lauber K (2008) Migration to apoptotic “find-me” signals is mediated via the phagocyte receptor G2A. J Biol Chem 283:5296–5305

    Article  CAS  PubMed  Google Scholar 

  23. Elliott MR, Chekeni FB, Trampont PC, Lazarowski ER, Kadl A, Walk SF, Park D, Woodson RI, Ostankovich M, Sharma P, Lysiak JJ, Harden TK, Leitinger N, Ravichandran KS (2009) Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance. Nature 461:282–286

    Article  CAS  PubMed  Google Scholar 

  24. Binder RJ, Han DK, Srivastava PK (2000) CD91: a receptor for heat shock protein gp96. Nat Immunol 1:151–155

    Article  CAS  PubMed  Google Scholar 

  25. Shi Y, Evans JE, Rock KL (2003) Molecular identification of a danger signal that alerts the immune system to dying cells. Nature 425:516–521

    Article  CAS  PubMed  Google Scholar 

  26. Lauber K, Blumenthal SG, Waibel M, Wesselborg S (2004) Clearance of apoptotic cells: getting rid of the corpses. Mol Cell 14:277–287

    Article  CAS  PubMed  Google Scholar 

  27. Gough PJ, Gomez IG, Wille PT, Raines EW (2006) Macrophage expression of active MMP-9 induces acute plaque disruption in apoE-deficient mice. J Clin Invest 116:59–69

    Article  CAS  PubMed  Google Scholar 

  28. Nagao T, Qin C, Grosheva I, Maxfield FR, Pierini LM (2007) Elevated cholesterol levels in the plasma membranes of macrophages inhibit migration by disrupting RhoA regulation. Arterioscler Thromb Vasc Biol 27:1596–1602

    Article  CAS  PubMed  Google Scholar 

  29. Ravichandran KS (2003) “Recruitment signals” from apoptotic cells: invitation to a quiet meal. Cell 113:817–820

    Article  CAS  PubMed  Google Scholar 

  30. Brown S, Heinisch I, Ross E, Shaw K, Buckley CD, Savill J (2002) Apoptosis disables CD31-mediated cell detachment from phagocytes promoting binding and engulfment. Nature 418:200–203

    Article  CAS  PubMed  Google Scholar 

  31. Wei YS, Lan Y, Liu YG, Meng LQ, Xu QQ, Xie HY (2009) Platelet-endothelial cell adhesion molecule-1 gene polymorphism and its soluble level are associated with ischemic stroke. DNA Cell Biol 28:151–158

    Article  CAS  PubMed  Google Scholar 

  32. Okazawa H, Motegi S, Ohyama N, Ohnishi H, Tomizawa T, Kaneko Y, Oldenborg PA, Ishikawa O, Matozaki T (2005) Negative regulation of phagocytosis in macrophages by the CD47-SHPS-1 system. J Immunol 174:2004–2011

    CAS  PubMed  Google Scholar 

  33. Gardai SJ, McPhillips KA, Frasch SC, Janssen WJ, Starefeldt A, Murphy-Ullrich JE, Bratton DL, Oldenborg PA, Michalak M, Henson PM (2005) Cell-surface calreticulin initiates clearance of viable or apoptotic cells through trans-activation of LRP on the phagocyte. Cell 123:321–334

    Article  CAS  PubMed  Google Scholar 

  34. Majeti R, Chao MP, Alizadeh AA, Pang WW, Jaiswal S, Gibbs KD Jr, van Rooijen N, Weissman IL (2009) CD47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells. Cell 138:286–299

    Article  CAS  PubMed  Google Scholar 

  35. Zou W, Lu Q, Zhao D, Li W, Mapes J, Xie Y, Wang X (2009) Caenorhabditis elegans myotubularin MTM-1 negatively regulates the engulfment of apoptotic cells. PLoS Genet 5:e1000679

    Article  PubMed  CAS  Google Scholar 

  36. Kinchen JM (2010) A model to die for: signaling to apoptotic cell removal in worm, fly and mouse. Apoptosis. doi:10.1007/s10495-010-0509-5

  37. Li S, Sun Y, Liang CP, Thorp EB, Han S, Jehle AW, Saraswathi V, Pridgen B, Kanter JE, Li R, Welch CL, Hasty AH, Bornfeldt KE, Breslow JL, Tabas I, Tall AR (2009) Defective phagocytosis of apoptotic cells by macrophages in atherosclerotic lesions of ob/ob mice and reversal by a fish oil diet. Circ Res 105:1072–1082

    Article  CAS  PubMed  Google Scholar 

  38. Schutters K, Reutelingsperger C (2010) Phosphatidylserine targeting for diagnosis and treatment of human diseases. Apoptosis. doi:10.1007/s10495-010-0503-y

  39. Arur S, Uche UE, Rezaul K, Fong M, Scranton V, Cowan AE, Mohler W, Han DK (2003) Annexin I is an endogenous ligand that mediates apoptotic cell engulfment. Dev Cell 4:587–598

    Article  CAS  PubMed  Google Scholar 

  40. Sambrano GR, Steinberg D (1995) Recognition of oxidatively damaged and apoptotic cells by an oxidized low density lipoprotein receptor on mouse peritoneal macrophages: role of membrane phosphatidylserine. Proc Natl Acad Sci USA 92:1396–1400

    Article  CAS  PubMed  Google Scholar 

  41. Savill JS, Henson PM, Haslett C (1989) Phagocytosis of aged human neutrophils by macrophages is mediated by a novel “charge-sensitive” recognition mechanism. J Clin Invest 84:1518–1527

    Article  CAS  PubMed  Google Scholar 

  42. Jaillon S, Jeannin P, Hamon Y, Fremaux I, Doni A, Bottazzi B, Blanchard S, Subra JF, Chevailler A, Mantovani A, Delneste Y (2009) Endogenous PTX3 translocates at the membrane of late apoptotic human neutrophils and is involved in their engulfment by macrophages. Cell Death Differ 16:465–474

    Article  CAS  PubMed  Google Scholar 

  43. Guzik K, Bzowska M, Smagur J, Krupa O, Sieprawska M, Travis J, Potempa J (2007) A new insight into phagocytosis of apoptotic cells: proteolytic enzymes divert the recognition and clearance of polymorphonuclear leukocytes by macrophages. Cell Death Differ 14:171–182

    Article  CAS  PubMed  Google Scholar 

  44. Li Y, Gerbod-Giannone MC, Seitz H, Cui D, Thorp E, Tall AR, Matsushima GK, Tabas I (2006) Cholesterol-induced apoptotic macrophages elicit an inflammatory response in phagocytes, which is partially attenuated by the Mer receptor. J Biol Chem 281:6707–6717

    Article  CAS  PubMed  Google Scholar 

  45. Ishimoto Y, Ohashi K, Mizuno K, Nakano T (2000) Promotion of the uptake of PS liposomes and apoptotic cells by a product of growth arrest-specific gene, gas6. J Biochem 127:411–417

    CAS  PubMed  Google Scholar 

  46. Ait-Oufella H, Kinugawa K, Zoll J, Simon T, Boddaert J, Heeneman S, Blanc-Brude O, Barateau V, Potteaux S, Merval R, Esposito B, Teissier E, Daemen MJ, Leseche G, Boulanger C, Tedgui A, Mallat Z (2007) Lactadherin deficiency leads to apoptotic cell accumulation and accelerated atherosclerosis in mice. Circulation 115:2168–2177

    Article  CAS  PubMed  Google Scholar 

  47. Benzakour O, Kanthou C (2000) The anticoagulant factor, protein S, is produced by cultured human vascular smooth muscle cells and its expression is up-regulated by thrombin. Blood 95:2008–2014

    CAS  PubMed  Google Scholar 

  48. Komura H, Miksa M, Wu R, Goyert SM, Wang P (2009) Milk fat globule epidermal growth factor-factor VIII is down-regulated in sepsis via the lipopolysaccharide-CD14 pathway. J Immunol 182:581–587

    CAS  PubMed  Google Scholar 

  49. Chen Y, Khanna S, Goodyear CS, Park YB, Raz E, Thiel S, Gronwall C, Vas J, Boyle DL, Corr M, Kono DH, Silverman GJ (2009) Regulation of dendritic cells and macrophages by an anti-apoptotic cell natural antibody that suppresses TLR responses and inhibits inflammatory arthritis. J Immunol 183:1346–1359

    Article  CAS  PubMed  Google Scholar 

  50. Surh CD, Sprent J (1994) T-cell apoptosis detected in situ during positive and negative selection in the thymus. Nature 372:100–103

    Article  CAS  PubMed  Google Scholar 

  51. Liu J, Thewke DP, Su YR, Linton MF, Fazio S, Sinensky MS (2005) Reduced macrophage apoptosis is associated with accelerated atherosclerosis in low-density lipoprotein receptor-null mice. Arterioscler Thromb Vasc Biol 25:174–179

    CAS  PubMed  Google Scholar 

  52. Tabas I, Williams KJ, Boren J (2007) Subendothelial lipoprotein retention as the initiating process in atherosclerosis: update and therapeutic implications. Circulation 116:1832–1844

    Article  CAS  PubMed  Google Scholar 

  53. Cui D, Thorp E, Li Y, Wang N, Yvan-Charvet L, Tall AR, Tabas I (2007) Pivotal advance: macrophages become resistant to cholesterol-induced death after phagocytosis of apoptotic cells. J Leukoc Biol 82:1040–1050

    Article  CAS  PubMed  Google Scholar 

  54. Platt N, da Silva RP, Gordon S (1998) Recognizing death: the phagocytosis of apoptotic cells. Trends Cell Biol 8:365–372

    Article  CAS  PubMed  Google Scholar 

  55. Park D, Tosello-Trampont AC, Elliott MR, Lu M, Haney LB, Ma Z, Klibanov AL, Mandell JW, Ravichandran KS (2007) BAI1 is an engulfment receptor for apoptotic cells upstream of the ELMO/Dock180/Rac module. Nature 450:430–434

    Article  CAS  PubMed  Google Scholar 

  56. Miyanishi M, Tada K, Koike M, Uchiyama Y, Kitamura T, Nagata S (2007) Identification of Tim4 as a phosphatidylserine receptor. Nature 450:435–439

    Article  CAS  PubMed  Google Scholar 

  57. Kobayashi N, Karisola P, Pena-Cruz V, Dorfman DM, Jinushi M, Umetsu SE, Butte MJ, Nagumo H, Chernova I, Zhu B, Sharpe AH, Ito S, Dranoff G, Kaplan GG, Casasnovas JM, Umetsu DT, Dekruyff RH, Freeman GJ (2007) TIM-1 and TIM-4 glycoproteins bind phosphatidylserine and mediate uptake of apoptotic cells. Immunity 27:927–940

    Article  CAS  PubMed  Google Scholar 

  58. Miller YI, Viriyakosol S, Binder CJ, Feramisco JR, Kirkland TN, Witztum JL (2003) Minimally modified LDL binds to CD14, induces macrophage spreading via TLR4/MD-2, and inhibits phagocytosis of apoptotic cells. J Biol Chem 278:1561–1568

    Article  CAS  PubMed  Google Scholar 

  59. Toth B, Garabuczi E, Sarang Z, Vereb G, Vamosi G, Aeschlimann D, Blasko B, Becsi B, Erdodi F, Lacy-Hulbert A, Zhang A, Falasca L, Birge RB, Balajthy Z, Melino G, Fesus L, Szondy Z (2009) Transglutaminase 2 is needed for the formation of an efficient phagocyte portal in macrophages engulfing apoptotic cells. J Immunol 182:2084–2092

    Article  CAS  PubMed  Google Scholar 

  60. Boisvert WA, Rose DM, Boullier A, Quehenberger O, Sydlaske A, Johnson KA, Curtiss LK, Terkeltaub R (2006) Leukocyte transglutaminase 2 expression limits atherosclerotic lesion size. Arterioscler Thromb Vasc Biol 26:563–569

    Article  CAS  PubMed  Google Scholar 

  61. Thorp E, Cui D, Schrijvers DM, Kuriakose G, Tabas I (2008) Mertk receptor mutation reduces efferocytosis efficiency and promotes apoptotic cell accumulation and plaque necrosis in atherosclerotic lesions of apoe−/− mice. Arterioscler Thromb Vasc Biol 28:1421–1428

    Article  CAS  PubMed  Google Scholar 

  62. Wallet MA, Sen P, Flores RR, Wang Y, Yi Z, Huang Y, Mathews CE, Earp HS, Matsushima G, Wang B, Tisch R (2008) MerTK is required for apoptotic cell-induced T cell tolerance. J Exp Med 205:219–232

    Article  CAS  PubMed  Google Scholar 

  63. Garcia-Touchard A, Henry TD, Sangiorgi G, Spagnoli LG, Mauriello A, Conover C, Schwartz RS (2005) Extracellular proteases in atherosclerosis and restenosis. Arterioscler Thromb Vasc Biol 25:1119–1127

    Article  CAS  PubMed  Google Scholar 

  64. Cardellini M, Menghini R, Martelli E, Casagrande V, Marino A, Rizza S, Porzio O, Mauriello A, Solini A, Ippoliti A, Lauro R, Folli F, Federici M (2009) TIMP3 is reduced in atherosclerotic plaques from subjects with type 2 diabetes and increased by SirT1. Diabetes 58:2396–2401

    Article  CAS  PubMed  Google Scholar 

  65. Krysko O, Vandenabeele P, Krysko DV, Bachert C (2010) impairment of phagocytosis of apoptotic cells and its role in chronic airway diseases. Apoptosis. doi:10.1007/s10495-010-0504-x

  66. Vandivier RW, Fadok VA, Hoffmann PR, Bratton DL, Penvari C, Brown KK, Brain JD, Accurso FJ, Henson PM (2002) Elastase-mediated phosphatidylserine receptor cleavage impairs apoptotic cell clearance in cystic fibrosis and bronchiectasis. J Clin Invest 109:661–670

    CAS  PubMed  Google Scholar 

  67. Canault M, Peiretti F, Kopp F, Bonardo B, Bonzi MF, Coudeyre JC, Alessi MC, Juhan-Vague I, Nalbone G (2006) The TNF alpha converting enzyme (TACE/ADAM17) is expressed in the atherosclerotic lesions of apolipoprotein E-deficient mice: possible contribution to elevated plasma levels of soluble TNF alpha receptors. Atherosclerosis 187:82–91

    Article  CAS  PubMed  Google Scholar 

  68. Sather S, Kenyon KD, Lefkowitz JB, Liang X, Varnum BC, Henson PM, Graham DK (2007) A soluble form of the Mer receptor tyrosine kinase inhibits macrophage clearance of apoptotic cells and platelet aggregation. Blood 109:1026–1033

    Article  CAS  PubMed  Google Scholar 

  69. Krysko DV, Denecker G, Festjens N, Gabriels S, Parthoens E, D’Herde K, Vandenabeele P (2006) Macrophages use different internalization mechanisms to clear apoptotic and necrotic cells. Cell Death Differ 13:2011–2022

    Article  CAS  PubMed  Google Scholar 

  70. May RC, Machesky LM (2001) Phagocytosis and the actin cytoskeleton. J Cell Sci 114:1061–1077

    CAS  PubMed  Google Scholar 

  71. Lu M, Ravichandran KS (2006) Dock180-ELMO cooperation in Rac activation. Methods Enzymol 406:388–402

    Article  CAS  PubMed  Google Scholar 

  72. Ravichandran KS, Lorenz U (2007) Engulfment of apoptotic cells: signals for a good meal. Nat Rev Immunol 7:964–974

    Article  CAS  PubMed  Google Scholar 

  73. Loirand G, Guerin P, Pacaud P (2006) Rho kinases in cardiovascular physiology and pathophysiology. Circ Res 98:322–334

    Article  CAS  PubMed  Google Scholar 

  74. Morimoto K, Janssen WJ, Fessler MB, McPhillips KA, Borges VM, Bowler RP, Xiao YQ, Kench JA, Henson PM, Vandivier RW (2006) Lovastatin enhances clearance of apoptotic cells (efferocytosis) with implications for chronic obstructive pulmonary disease. J Immunol 176:7657–7665

    CAS  PubMed  Google Scholar 

  75. McPhillips K, Janssen WJ, Ghosh M, Byrne A, Gardai S, Remigio L, Bratton DL, Kang JL, Henson P (2007) TNF-alpha inhibits macrophage clearance of apoptotic cells via cytosolic phospholipase A2 and oxidant-dependent mechanisms. J Immunol 178:8117–8126

    CAS  PubMed  Google Scholar 

  76. Anderson HA, Englert R, Gursel I, Shacter E (2002) Oxidative stress inhibits the phagocytosis of apoptotic cells that have externalized phosphatidylserine. Cell Death Differ 9:616–625

    Article  CAS  PubMed  Google Scholar 

  77. Young JD, Ko SS, Cohn ZA (1984) The increase in intracellular free calcium associated with IgG gamma 2b/gamma 1 Fc receptor-ligand interactions: role in phagocytosis. Proc Natl Acad Sci USA 81:5430–5434

    Article  CAS  PubMed  Google Scholar 

  78. Hackam DJ, Rotstein OD, Schreiber A, Zhang W, Grinstein S (1997) Rho is required for the initiation of calcium signaling and phagocytosis by Fcgamma receptors in macrophages. J Exp Med 186:955–966

    Article  CAS  PubMed  Google Scholar 

  79. Rosales C, Brown EJ (1992) Signal transduction by neutrophil immunoglobulin G Fc receptors. Dissociation of intracytoplasmic calcium concentration rise from inositol 1,4,5-trisphosphate. J Biol Chem 267:5265–5271

    CAS  PubMed  Google Scholar 

  80. Zhang J, Guo J, Dzhagalov I, He YW (2005) An essential function for the calcium-promoted Ras inactivator in Fcgamma receptor-mediated phagocytosis. Nat Immunol 6:911–919

    Article  CAS  PubMed  Google Scholar 

  81. Sawyer DW, Sullivan JA, Mandell GL (1985) Intracellular free calcium localization in neutrophils during phagocytosis. Science 230:663–666

    Article  CAS  PubMed  Google Scholar 

  82. Jaconi ME, Lew DP, Carpentier JL, Magnusson KE, Sjogren M, Stendahl O (1990) Cytosolic free calcium elevation mediates the phagosome-lysosome fusion during phagocytosis in human neutrophils. J Cell Biol 110:1555–1564

    Article  CAS  PubMed  Google Scholar 

  83. Marks PW, Maxfield FR (1990) Local and global changes in cytosolic free calcium in neutrophils during chemotaxis and phagocytosis. Cell Calcium 11:181–190

    Article  CAS  PubMed  Google Scholar 

  84. Canetti C, Aronoff DM, Choe M, Flamand N, Wettlaufer S, Toews GB, Chen GH, Peters-Golden M (2006) Differential regulation by leukotrienes and calcium of Fc gamma receptor-induced phagocytosis and Syk activation in dendritic cells versus macrophages. J Leukoc Biol 79:1234–1241

    Article  CAS  PubMed  Google Scholar 

  85. Becker SM, Delamarre L, Mellman I, Andrews NW (2009) Differential role of the Ca(2+) sensor synaptotagmin VII in macrophages and dendritic cells. Immunobiology 214(7):495–505

    Article  CAS  PubMed  Google Scholar 

  86. Poggi A, Carosio R, Rubartelli A, Zocchi MR (2002) Beta(3)-mediated engulfment of apoptotic tumor cells by dendritic cells is dependent on CAMKII: inhibition by HIV-1 Tat. J Leukoc Biol 71:531–537

    CAS  PubMed  Google Scholar 

  87. Herrmann TL, Morita CT, Lee K, Kusner DJ (2005) Calmodulin kinase II regulates the maturation and antigen presentation of human dendritic cells. J Leukoc Biol 78:1397–1407

    Article  CAS  PubMed  Google Scholar 

  88. Cuttell L, Vaughan A, Silva E, Escaron CJ, Lavine M, Van GE, Eid JP, Quirin M, Franc NC (2008) Undertaker, a Drosophila Junctophilin, links Draper-mediated phagocytosis and calcium homeostasis. Cell 135:524–534

    Article  CAS  PubMed  Google Scholar 

  89. De Lorenzo BH, Godoy LC, Novaes e Brito RR, Pagano RL, Amorim-Dias MA, Grosso DM, Lopes JD, Mariano M (2009) Macrophage suppression following phagocytosis of apoptotic neutrophils is mediated by the S100A9 calcium-binding protein. Immunobiology 215(5):341–347

    Article  PubMed  CAS  Google Scholar 

  90. Gronski MA, Kinchen JM, Juncadella IJ, Franc NC, Ravichandran KS (2009) An essential role for calcium flux in phagocytes for apoptotic cell engulfment and the anti-inflammatory response. Cell Death Differ 16:1323–1331

    Article  CAS  PubMed  Google Scholar 

  91. Apetoh L, Ghiringhelli F, Tesniere A, Obeid M, Ortiz C, Criollo A, Mignot G, Maiuri MC, Ullrich E, Saulnier P, Yang H, Amigorena S, Ryffel B, Barrat FJ, Saftig P, Levi F, Lidereau R, Nogues C, Mira JP, Chompret A, Joulin V, Clavel-Chapelon F, Bourhis J, Andre F, Delaloge S, Tursz T, Kroemer G, Zitvogel L (2007) Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med 13:1050–1059

    Article  CAS  PubMed  Google Scholar 

  92. Tabas I (2010) Macrophage death and defective inflammation resolution in atherosclerosis. Nat Rev Immunol 10:36–46

    Article  CAS  PubMed  Google Scholar 

  93. Serhan CN, Chiang N, Van Dyke TE (2008) Resolving inflammation: dual anti-inflammatory and pro-resolution lipid mediators. Nat Rev Immunol 8:349–361

    Article  CAS  PubMed  Google Scholar 

  94. Rothlin CV, Ghosh S, Zuniga EI, Oldstone MB, Lemke G (2007) TAM receptors are pleiotropic inhibitors of the innate immune response. Cell 131:1124–1136

    Article  CAS  PubMed  Google Scholar 

  95. Peet DJ, Turley SD, Ma W, Janowski BA, Lobaccaro JM, Hammer RE, Mangelsdorf DJ (1998) Cholesterol and bile acid metabolism are impaired in mice lacking the nuclear oxysterol receptor LXR alpha. Cell 93:693–704

    Article  CAS  PubMed  Google Scholar 

  96. Castrillo A, Tontonoz P (2004) Nuclear receptors in macrophage biology: at the crossroads of lipid metabolism and inflammation. Annu Rev Cell Dev Biol 20:455–480

    Article  CAS  PubMed  Google Scholar 

  97. Gonzalez N, Bensinger SJ, Hong C, Beceiro S, Bradley MN, Zelcer N, Deniz J, Ramirez C, Diaz M, Gallardo G, de Galarreta CR, Salazar J, Lopez F, Edwards P, Parks J, Andujar M, Tontonoz P, Castrillo A (2009) Apoptotic cells promote their own clearance and immune tolerance through activation of the nuclear receptor LXR. Immunity 31:245–258

    Article  CAS  Google Scholar 

  98. Geyeregger R, Zeyda M, Bauer W, Kriehuber E, Saemann MD, Zlabinger GJ, Maurer D, Stulnig TM (2007) Liver X receptors regulate dendritic cell phenotype and function through blocked induction of the actin-bundling protein fascin. Blood 109:4288–4295

    Article  CAS  PubMed  Google Scholar 

  99. Majai G, Sarang Z, Csomos K, Zahuczky G, Fesus L (2007) PPARgamma-dependent regulation of human macrophages in phagocytosis of apoptotic cells. Eur J Immunol 37:1343–1354

    Article  CAS  PubMed  Google Scholar 

  100. Mukundan L, Odegaard JI, Morel CR, Heredia JE, Mwangi JW, Ricardo-Gonzalez RR, Goh YP, Eagle AR, Dunn SE, Awakuni JU, Nguyen KD, Steinman L, Michie SA, Chawla A (2009) PPAR-delta senses and orchestrates clearance of apoptotic cells to promote tolerance. Nat Med 15(11):1266–1272

    Article  CAS  PubMed  Google Scholar 

  101. Rebe C, Raveneau M, Chevriaux A, Lakomy D, Sberna AL, Costa A, Bessede G, Athias A, Steinmetz E, Lobaccaro JM, Alves G, Menicacci A, Vachenc S, Solary E, Gambert P, Masson D (2009) Induction of transglutaminase 2 by a liver X receptor/retinoic acid receptor alpha pathway increases the clearance of apoptotic cells by human macrophages. Circ Res 105:393–401

    Article  CAS  PubMed  Google Scholar 

  102. Bouhlel MA, Derudas B, Rigamonti E, Dievart R, Brozek J, Haulon S, Zawadzki C, Jude B, Torpier G, Marx N, Staels B, Chinetti-Gbaguidi G (2007) PPARgamma activation primes human monocytes into alternative M2 macrophages with anti-inflammatory properties. Cell Metab 6:137–143

    Article  CAS  PubMed  Google Scholar 

  103. Sugiyama S, Okada Y, Sukhova GK, Virmani R, Heinecke JW, Libby P (2001) Macrophage myeloperoxidase regulation by granulocyte macrophage colony-stimulating factor in human atherosclerosis and implications in acute coronary syndromes. Am J Pathol 158:879–891

    CAS  PubMed  Google Scholar 

  104. Dollery CM, Owen CA, Sukhova GK, Krettek A, Shapiro SD, Libby P (2003) Neutrophil elastase in human atherosclerotic plaques: production by macrophages. Circulation 107:2829–2836

    Article  CAS  PubMed  Google Scholar 

  105. Johnson JL, Sala-Newby GB, Ismail Y, Aguilera CM, Newby AC (2008) Low tissue inhibitor of metalloproteinases 3 and high matrix metalloproteinase 14 levels defines a subpopulation of highly invasive foam-cell macrophages. Arterioscler Thromb Vasc Biol 28:1647–1653

    Article  CAS  PubMed  Google Scholar 

  106. Salomon RN, Underwood R, Doyle MV, Wang A, Libby P (1992) Increased apolipoprotein E and c-fms gene expression without elevated interleukin 1 or 6 mRNA levels indicates selective activation of macrophage functions in advanced human atheroma. Proc Natl Acad Sci USA 89:2814–2818

    Article  CAS  PubMed  Google Scholar 

  107. Gordon S, Taylor PR (2005) Monocyte and macrophage heterogeneity. Nat Rev Immunol 5:953–964

    Article  CAS  PubMed  Google Scholar 

  108. Wilcox JN, Smith KM, Schwartz SM, Gordon D (1989) Localization of tissue factor in the normal vessel wall and in the atherosclerotic plaque. Proc Natl Acad Sci USA 86:2839–2843

    Article  CAS  PubMed  Google Scholar 

  109. Xu W, Roos A, Schlagwein N, Woltman AM, Daha MR, van Kooten C (2006) IL-10-producing macrophages preferentially clear early apoptotic cells. Blood 107:4930–4937

    Article  CAS  PubMed  Google Scholar 

  110. Tacke F, Alvarez D, Kaplan TJ, Jakubzick C, Spanbroek R, Llodra J, Garin A, Liu J, Mack M, van Rooijen N, Lira SA, Habenicht AJ, Randolph GJ (2007) Monocyte subsets differentially employ CCR2, CCR5, and CX3CR1 to accumulate within atherosclerotic plaques. J Clin Invest 117:185–194

    Article  CAS  PubMed  Google Scholar 

  111. Gautier EL, Huby T, Saint-Charles F, Ouzilleau B, Pirault J, Deswaerte V, Ginhoux F, Miller ER, Witztum JL, Chapman MJ, Lesnik P (2009) Conventional dendritic cells at the crossroads between immunity and cholesterol homeostasis in atherosclerosis. Circulation 119:2367–2375

    Article  CAS  PubMed  Google Scholar 

  112. Albert ML, Pearce SF, Francisco LM, Sauter B, Roy P, Silverstein RL, Bhardwaj N (1998) Immature dendritic cells phagocytose apoptotic cells via alphavbeta5 and CD36, and cross-present antigens to cytotoxic T lymphocytes. J Exp Med 188:1359–1368

    Article  CAS  PubMed  Google Scholar 

  113. Miyasaka K, Hanayama R, Tanaka M, Nagata S (2004) Expression of milk fat globule epidermal growth factor 8 in immature dendritic cells for engulfment of apoptotic cells. Eur J Immunol 34:1414–1422

    Article  CAS  PubMed  Google Scholar 

  114. Cho HJ, Shashkin P, Gleissner CA, Dunson D, Jain N, Lee JK, Miller Y, Ley K (2007) Induction of dendritic cell-like phenotype in macrophages during foam cell formation. Physiol Genomics 29:149–160

    CAS  PubMed  Google Scholar 

  115. Iyoda T, Shimoyama S, Liu K, Omatsu Y, Akiyama Y, Maeda Y, Takahara K, Steinman RM, Inaba K (2002) The CD8+ dendritic cell subset selectively endocytoses dying cells in culture and in vivo. J Exp Med 195:1289–1302

    Article  CAS  PubMed  Google Scholar 

  116. Leenen PJ, Radosevic K, Voerman JS, Salomon B, van Rooijen N, Klatzmann D, van Ewijk W (1998) Heterogeneity of mouse spleen dendritic cells: in vivo phagocytic activity, expression of macrophage markers, and subpopulation turnover. J Immunol 160:2166–2173

    CAS  PubMed  Google Scholar 

  117. Trombetta ES, Ebersold M, Garrett W, Pypaert M, Mellman I (2003) Activation of lysosomal function during dendritic cell maturation. Science 299:1400–1403

    Article  CAS  PubMed  Google Scholar 

  118. Bedoret D, Wallemacq H, Marichal T, Desmet C, Quesada CF, Henry E, Closset R, Dewals B, Thielen C, Gustin P, de Leval L, van Rooijen N, Le Moine A, Vanderplasschen A, Cataldo D, Drion PV, Moser M, Lekeux P, Bureau F (2009) Lung interstitial macrophages alter dendritic cell functions to prevent airway allergy in mice. J Clin Invest 119(12):3723–3738

    Article  CAS  PubMed  Google Scholar 

  119. Clarke MC, Talib S, Figg NL, Bennett MR (2009) Vascular smooth muscle cell apoptosis induces interleukin-1-directed inflammation. Effects of hyperlipidemia-mediated inhibition of phagocytosis. Circ Res 106(2):363–372

    Article  PubMed  CAS  Google Scholar 

  120. Libby P, Geng YJ, Aikawa M, Schoenbeck U, Mach F, Clinton SK, Sukhova GK, Lee RT (1996) Macrophages and atherosclerotic plaque stability. Curr Opin Lipidol 7:330–335

    Article  CAS  PubMed  Google Scholar 

  121. Weigert A, Johann AM, von Knethen A, Schmidt H, Geisslinger G, Brune B (2006) Apoptotic cells promote macrophage survival by releasing the anti-apoptotic mediator sphingosine-1-phosphate. Blood 108:1635–1642

    Article  CAS  PubMed  Google Scholar 

  122. Loke P, Gallagher I, Nair MG, Zang X, Brombacher F, Mohrs M, Allison JP, Allen JE (2007) Alternative activation is an innate response to injury that requires CD4+ T cells to be sustained during chronic infection. J Immunol 179:3926–3936

    CAS  PubMed  Google Scholar 

  123. Peng Y, Latchman Y, Elkon KB (2009) Ly6C(low) monocytes differentiate into dendritic cells and cross-tolerize T cells through PDL-1. J Immunol 182:2777–2785

    Article  CAS  PubMed  Google Scholar 

  124. Odegaard JI, Ricardo-Gonzalez RR, Goforth MH, Morel CR, Subramanian V, Mukundan L, Eagle AR, Vats D, Brombacher F, Ferrante AW, Chawla A (2007) Macrophage-specific PPARgamma controls alternative activation and improves insulin resistance. Nature 447:1116–1120

    Article  CAS  PubMed  Google Scholar 

  125. Odegaard JI, Ricardo-Gonzalez RR, Red EA, Vats D, Morel CR, Goforth MH, Subramanian V, Mukundan L, Ferrante AW, Chawla A (2008) Alternative M2 activation of Kupffer cells by PPARdelta ameliorates obesity-induced insulin resistance. Cell Metab 7:496–507

    Article  CAS  PubMed  Google Scholar 

  126. Mitchell S, Thomas G, Harvey K, Cottell D, Reville K, Berlasconi G, Petasis NA, Erwig L, Rees AJ, Savill J, Brady HR, Godson C (2002) Lipoxins, aspirin-triggered epi-lipoxins, lipoxin stable analogues, and the resolution of inflammation: stimulation of macrophage phagocytosis of apoptotic neutrophils in vivo. J Am Soc Nephrol 13:2497–2507

    Article  CAS  PubMed  Google Scholar 

  127. Yilmaz A, Reiss C, Tantawi O, Weng A, Stumpf C, Raaz D, Ludwig J, Berger T, Steinkasserer A, Daniel WG, Garlichs CD (2004) HMG-CoA reductase inhibitors suppress maturation of human dendritic cells: new implications for atherosclerosis. Atherosclerosis 172:85–93

    Article  CAS  PubMed  Google Scholar 

  128. Miksa M, Wu R, Dong W, Das P, Yang D, Wang P (2006) Dendritic cell-derived exosomes containing milk fat globule epidermal growth factor-factor VIII attenuate proinflammatory responses in sepsis. Shock 25:586–593

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I first and foremost thank my postdoctoral mentor Dr. Ira Tabas for support, guidance, and inspiration. I am also grateful to insightful discussions with Drs Alan Tall, Gwendalyn Randolph, Lauren Yvan-Charvet, Molly Ingersoll, and Dorien Schrijvers. Previous support from an American Heart Association National Scientist Development Grant 09SDG2150036 and currently: NIH NHLBI K99 1K99HL097021-01 and an Irving Institute for Clinical and Translational Research Pilot Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward B. Thorp.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thorp, E.B. Mechanisms of failed apoptotic cell clearance by phagocyte subsets in cardiovascular disease. Apoptosis 15, 1124–1136 (2010). https://doi.org/10.1007/s10495-010-0516-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-010-0516-6

Keywords

Navigation