Skip to main content

DNA Methylation Analysis of Human Tissue-Specific Connexin Genes

  • Protocol
  • First Online:
Gap Junction Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1437))

Abstract

Connexins are the structural proteins of gap junctions and their functioning as tumor suppressors is well known. Epigenetic modifications, such as methylation of connexin genes, play important roles in regulating gene expression. Over the past decade, several methods have been applied to characterize DNA methylation-specific loci of connexin genes. This chapter describes analysis of selective connexin32 and connexin43 gene DNA methylation in human gastric tissues using methylation-specific PCR, bisulfite-specific PCR sequencing as well as MassArray techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Decrock E, Vinken M, De Vuyst E et al (2009) Connexin-related signaling in cell death: to live or let die? Cell Death Differ 16:524–536

    Article  CAS  PubMed  Google Scholar 

  2. Balda MS, Matter K (2000) The tight junction protein ZO-1 and an interacting transcription factor regulate ErbB-2 expression. EMBO J 19:2024–2033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Penes MC, Li X, Nagy JI (2005) Expression of zonula occludens-1 (ZO-1) and the transcription factor ZO-1-associated nucleic acid-binding protein (ZONAB)-MsY3 in glial cells and colocalization at oligodendrocyte and astrocyte gap junctions in mouse brain. Eur J Neurosci 22:404–418

    Article  PubMed  Google Scholar 

  4. Herrero-Gonzalez S, Gangoso E, Giaume C et al (2010) Connexin43 inhibits the oncogenic activity of c-Src in C6 glioma cells. Oncogene 29:5712–5723

    Article  CAS  PubMed  Google Scholar 

  5. Sirnes S, Lind GE, Bruun J et al (2015) Connexins in colorectal cancer pathogenesis. Int J Cancer 137:1–11

    Article  CAS  PubMed  Google Scholar 

  6. Dang X, Doble BW, Kardami E (2003) The carboxy-tail of connexin-43 localizes to the nucleus and inhibits cell growth. Mol Cell Biochem 242:35–38

    Article  CAS  PubMed  Google Scholar 

  7. Mesnil M, Krutovskikh V, Piccoli C et al (1995) Negative growth control of HeLa cells by connexin genes: connexin species specificity. Cancer Res 55:629–639

    CAS  PubMed  Google Scholar 

  8. Leithe E, Rivedal E (2007) Ubiquitination of gap junction proteins. J Membr Biol 217:43–51

    Article  CAS  PubMed  Google Scholar 

  9. Vinken M, De Rop E, Decrock E et al (2009) Epigenetic regulation of gap junctional intercellular communication: more than a way to keep cells quiet? Biochim Biophys Acta 1795:53–61

    CAS  PubMed  Google Scholar 

  10. Costello JF, Plass C (2001) Methylation matters. J Med Genet 38:285–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Piechocki MP, Burk RD, Ruch RJ (1999) Regulation of connexin32 and connexin43 gene expression by DNA methylation in rat liver cells. Carcinogenesis 20:401–406

    Article  CAS  PubMed  Google Scholar 

  12. Yano T, Ito F, Kobayashi K et al (2004) Hypermethylation of the CpG island of connexin 32, a candidate tumor suppressor gene in renal cell carcinomas from hemodialysis patients. Cancer Lett 208:137–142

    Article  CAS  PubMed  Google Scholar 

  13. Yi ZC, Wang H, Zhang GY et al (2007) Downregulation of connexin 43 in nasopharyngeal carcinoma cells is related to promoter methylation. Oral Oncol 43:898–904

    Article  CAS  PubMed  Google Scholar 

  14. Tsujiuchi T, Shimizu K, Itsuzaki Y et al (2007) CpG site hypermethylation of E-cadherin and Connexin26 genes in hepatocellular carcinomas induced by a choline-deficient L-Amino Acid-defined diet in rats. Mol Carcinog 46:269–274

    Article  CAS  PubMed  Google Scholar 

  15. Hayatsu H, Wataya Y, Kai K et al (1970) Reaction of sodium bisulfite with uracil, cytosine, and their derivatives. Biochemistry 9:2858–2865

    Article  CAS  PubMed  Google Scholar 

  16. Kai K, Tsuruo T, Hayatsu H (1974) The effect of bisulfite modification on the template activity of DNA for DNA polymerase I. Nucleic Acids Res 1:889–899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pappas JJ, Toulouse A, Bradley WE (2009) A modified protocol for bisulfite genomic sequencing of difficult samples. Biol Proced Online 11:99–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jurinke C, Denissenko MF, Oeth P et al (2005) A single nucleotide polymorphism based approach for the identification and characterization of gene expression modulation using MassARRAY. Mutat Res 573:83–95

    Article  CAS  PubMed  Google Scholar 

  19. Wang Y, Huang LH, Xu CX et al (2014) Connexin 32 and 43 promoter methylation in Helicobacter pylori-associated gastric tumorigenesis. World J Gastroenterol 20:11770–11779

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Endoscopic Unit of Third Xiangya Hospital of Central South University for the supply of clinical samples. This work was financially supported by the National Natural Science Foundation of China (No. 81172301).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Canxia Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Liu, X., Xu, C. (2016). DNA Methylation Analysis of Human Tissue-Specific Connexin Genes. In: Vinken, M., Johnstone, S. (eds) Gap Junction Protocols. Methods in Molecular Biology, vol 1437. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3664-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3664-9_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3662-5

  • Online ISBN: 978-1-4939-3664-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics