Skip to main content

Selecting Specific PCR Primers with MFEprimer

  • Protocol
  • First Online:
PCR Primer Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1275))

Abstract

Selecting specific primers is crucial for polymerase chain reaction (PCR). Nonspecific primers will bind to unintended genes and result in nonspecific amplicons. MFEprimer is a program for checking the specificity of PCR primers against the background DNA. In this chapter, we introduce: (1) the factors that affect the specificity of primers; (2) the principle of MFEprimer and its settings; (3) how to use the MFEprimer to examine the specificity of primers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Qu W, Shen Z, Zhao D et al (2009) MFEprimer: multiple factor evaluation of the specificity of PCR primers. Bioinformatics 25(2):276–278

    Article  CAS  PubMed  Google Scholar 

  2. Qu W, Zhou Y, Zhang Y et al (2012) MFEprimer-2.0: a fast thermodynamics-based program for checking PCR primer specificity. Nucleic Acids Res 40(W1):W205–W208

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Lexa M, Horak J, Brzobohaty B (2001) Virtual PCR. Bioinformatics 17(2):192–193

    Article  CAS  PubMed  Google Scholar 

  4. Lexa M, Valle G (2003) PRIMEX: rapid identification of oligonucleotide matches in whole genomes. Bioinformatics 19(18):2486–2488

    Article  CAS  PubMed  Google Scholar 

  5. Boutros PC, Okey AB (2004) PUNS: transcriptomic- and genomic-in silico PCR for enhanced primer design. Bioinformatics 20(15):2399–2400

    Article  CAS  PubMed  Google Scholar 

  6. Andreson R, Kaplinski L, Remm M (2007) Fast masking of repeated primer binding sites in eukaryotic genomes. Methods Mol Biol 402:201–218

    Article  CAS  PubMed  Google Scholar 

  7. Altschul SF, Madden TL, Schaffer AA et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. SantaLucia J Jr (2007) Physical principles and visual-OMP software for optimal PCR design. Methods Mol Biol 402:3–34

    Article  CAS  PubMed  Google Scholar 

  9. SantaLucia J, Hicks D (2004) The thermodynamics of DNA structural motifs. Annu Rev Biophys Biomol Struct 33:415–440

    Article  CAS  PubMed  Google Scholar 

  10. Onodera K, Melcher U (2004) Selection for 3′ end triplets for polymerase chain reaction primers. Mol Cell Probes 18(6):369–372

    Article  CAS  PubMed  Google Scholar 

  11. Miura F, Uematsu C, Sakaki Y et al (2005) A novel strategy to design highly specific PCR primers based on the stability and uniqueness of 3′-end subsequences. Bioinformatics 21(24):4363–4370

    Article  CAS  PubMed  Google Scholar 

  12. SantaLucia J (1998) A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor hermodynamics. Proc Natl Acad Sci U S A 95(4):1460–1465

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Lindblad-Toh K, Wade CM, Mikkelsen TS et al (2005) Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature 438(7069):803–819

    Article  CAS  PubMed  Google Scholar 

  14. Zhou Y, Qu W, Lu Y et al (2011) VizPrimer: a web server for visualized PCR primer design based on known gene structure. Bioinformatics 27(24):3432–3434

    Article  CAS  PubMed  Google Scholar 

  15. Notredame C, Higgins DG, Heringa J (2000) T-Coffee: a novel method for fast and accurate multiple sequence alignment. J Mol Biol 302(1):205–217

    Article  CAS  PubMed  Google Scholar 

  16. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5):1792–1797

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Andreson R, Möls T, Remm M (2008) Predicting failure rate of PCR in large genomes. Nucleic Acids Res 36(11):e66

    Article  PubMed Central  PubMed  Google Scholar 

  18. Rychlik W (1995) Priming efficiency in PCR. Biotechniques 18(1):84–86, 88–90

    CAS  PubMed  Google Scholar 

  19. Kent WJ (2002) BLAT—the BLAST-like alignment tool. Genome Res 12(4):656–664

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Panjkovich A, Melo F (2005) Comparison of different melting temperature calculation methods for short DNA sequences. Bioinformatics 21(6):711–722

    Article  CAS  PubMed  Google Scholar 

  21. von Ahsen N, Wittwer CT, Schutz E (2001) Oligonucleotide melting temperatures under PCR conditions: nearest-neighbor corrections for Mg2+, deoxynucleotide triphosphate, and dimethyl sulfoxide concentrations with comparison to alternative empirical formulas. Clin Chem 47(11):1956–1961

    Google Scholar 

  22. Crothers DM, Zimm BH (1964) Theory of the melting transition of synthetic polynucleotides: evaluation of the stacking free energy. J Mol Biol 9:1–9

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Basic Research Project (973 program) (2012CB518200), the General Program (31371345, 30900862, 30973107, 81070741, 81172770) of the Natural Science Foundation of China, the State Key Laboratory of Proteomics of China (SKLP-O201104, SKLP-K201004, SKLP-O201002), and the Special Key Programs for Science and Technology of China (2012ZX09102301-016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chenggang Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Qu, W., Zhang, C. (2015). Selecting Specific PCR Primers with MFEprimer. In: Basu, C. (eds) PCR Primer Design. Methods in Molecular Biology, vol 1275. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2365-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2365-6_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2364-9

  • Online ISBN: 978-1-4939-2365-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics