Skip to main content

Physical Principles and Visual-OMP Software for Optimal PCR Design

  • Protocol
PCR Primer Design

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 402))

Summary

The physical principles of DNA hybridization and folding are described within the context of how they are important for designing optimal PCRs. The multi-state equilibrium model for computing the concentrations of competing unimolecular and bimolecular species is described. Seven PCR design “myths” are stated explicitly, and alternative proper physical models for PCR design are described. This chapter provides both a theoretical framework for understanding PCR design and practical guidelines for users. The Visual-OMP (oligonucleotide modeling platform) package from DNA Software, Inc. is also described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Royce, R. D., SantaLucia, J., Jr. & Hicks, D. A. (2003). Building an in silico laboratory for genomic assay design. Pharm. Visions 10–12.

    Google Scholar 

  2. SantaLucia, J., Jr. & Hicks, D. (2004). The thermodynamics of DNA structural motifs. Annu. Rev. Biophys. Biomol. Struct. 33, 415–440.

    Article  PubMed  CAS  Google Scholar 

  3. Puglisi, J. &; Tinoco, I., Jr. (1989). Absorbance melting curves of RNA. Methods Enzymol. 180, 304–325.

    Article  PubMed  CAS  Google Scholar 

  4. SantaLucia, J. J. (2000). The use of spectroscopic techniques in the study of DNA stability. In Spectrophotometry and Spectrofluorometry. A Practical Approach (Gore, M. G., ed.), pp. 329–356. Oxford University Press.

    Google Scholar 

  5. SantaLucia, J., Jr. &; Turner, D. H. (1997). Measuring the thermodynamics of RNA secondary structure formation. Biopolymers 44, 309–319.

    Article  PubMed  CAS  Google Scholar 

  6. Press, W. H., Flannery, B. P., Teukolsky, S. A. &; Vetterling, W. T. (1989). Numerical Recipes in C, Cambridge University Press, New York.

    Google Scholar 

  7. SantaLucia, J., Jr. (1998). A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics. Proc. Natl. Acad. Sci. U. S. A. 95, 1460–1465.

    Article  PubMed  CAS  Google Scholar 

  8. Bommarito, S., Peyret, N. &; SantaLucia, J., Jr. (2000). Thermodynamic parameters for DNA sequences with dangling ends. Nucleic Acids Res. 28, 1929–1934.

    Article  PubMed  CAS  Google Scholar 

  9. Peyret, N., Seneviratne, P. A., Allawi, H. T. &; SantaLucia, J., Jr. (1999). Nearest-neighbor thermodynamics and NMR of DNA sequences with internal A-A, C-C, G-G, and T-T mismatches. Biochemistry 38, 3468–3477.

    Article  PubMed  CAS  Google Scholar 

  10. Allawi, H. T. &; SantaLucia, J., Jr. (1997). Thermodynamics and NMR of internal G-T mismatches in DNA. Biochemistry 36, 10581–10594.

    Article  PubMed  CAS  Google Scholar 

  11. Watkins, N. E., Jr. &; SantaLucia, J., Jr. (2005). Nearest-neighbor thermodynamics of deoxyinosine pairs in DNA duplexes. Nucleic Acids Res. 33, 6258–6267.

    Article  PubMed  CAS  Google Scholar 

  12. Rychlik, W. &; Rhoads, E. R. (1989). A computer program for choosing optimal oligonucleotides for filter hybridization, sequencing, and in vitro amplification of DNA. Nucleic Acids Res. 17, 8543–8551.

    Article  PubMed  CAS  Google Scholar 

  13. Rozen, S. &; Skaletsky, H. (2000). Primer3 on the WWW for general users and for biologist programmers. Methods Mol. Biol. 132, 365–386.

    PubMed  CAS  Google Scholar 

  14. Li, P., Kupfer, K. C., Davies, C. J., Burbee, D., Evans, G. A. &; Garner, H. R. (1997). PRIMO: a primer design program that applies base quality statistics for automated large-scale DNA sequencing. Genomics 40, 476–485.

    Article  PubMed  CAS  Google Scholar 

  15. Haas, S., Vingron, M., Poustka, A. &; Wiemann, S. (1998). Primer design for large scale sequencing. Nucleic Acids Res. 26, 3006–3012.

    Article  PubMed  CAS  Google Scholar 

  16. Hillier, L. &; Green, P. (1991). OSP: a computer program for choosing PCR and DNA sequencing primers. PCR Methods Appl. 1, 124–128.

    PubMed  CAS  Google Scholar 

  17. Proutski, V. &; Holmes, E. C. (1996). PrimerMaster: a new program for the design and analysis of PCR primers. Comput. Appl. Biosci. 12, 253–255.

    PubMed  CAS  Google Scholar 

  18. Hyndman, D., Cooper, A., Pruzinsky, S., Coad, D. &; Mitsuhashi, M. (1996). Software to determine optimal oligonucleotide sequences based on hybridization simulation data. Biotechniques 20, 1090–1097.

    PubMed  CAS  Google Scholar 

  19. Wallace, R. B., Shaffer, J., Murphy, R. F., Bonner, J., Hirose, T. &; Itakura, K. (1979). Hybridization of synthetic oligodeoxynucleotides to fX174 DNA: the effect of single base pair mismatch. Nucleic Acids Res. 6, 3543–3557.

    Article  PubMed  CAS  Google Scholar 

  20. Sambrook, J., Fritsch, E. F. &; Maniatis, T. (1989). In Molecular Cloning: A Laboratory Manual, 2 edition, Vol. II, pp. 11.46–11.47. Cold Spring Harbor Laboratory Press, New York.

    Google Scholar 

  21. Bolton, E. T. &; McCarthy, B. J. (1962). A general method for the isolation of RNA complementary to DNA. Proc. Natl. Acad. Sci. U. S. A. 48, 1390.

    Google Scholar 

  22. Frank-Kamenetskii, M. D. (1971). Simplification of the empirical relationship between melting temperature of DNA, its GC content and concentration of sodium ions in solution. Biopolymers 10, 2623–2624.

    Article  PubMed  CAS  Google Scholar 

  23. Bonner, T. I., Brenner, D. J., Neufeld, B. R. &; Britten, R. J. (1973). Reduction in the rate of DNA reassociation by sequence divergence. J. Mol. Biol. 81, 123.

    Article  PubMed  CAS  Google Scholar 

  24. Owczarzy, R., Vallone, P. M., Paner, T. M., Lane, M. J. &; Benight, A. S. (1997). Predicting sequence-dependent melting stability of short duplex DNA oligomers. Biopolymers 44, 217–239.

    Article  PubMed  CAS  Google Scholar 

  25. Breslauer, K. J., Frank, R., Blocker, H. &; Marky, L. A. (1986). Predicting DNA duplex stability from the base sequence. Proc. Natl. Acad. Sci. U. S. A. 83, 3746–3750.

    Article  PubMed  CAS  Google Scholar 

  26. Dimitrov, R. A. &; Zuker, M. (2004). Prediction of hybridization and melting for double-stranded nucleic acids. Biophys. J. 87, 215–226.

    Article  PubMed  CAS  Google Scholar 

  27. Mathews, D., Burkard, M., Freier, S., Wyatt, J. &; Turner, D. (1999). Predicting oligonucleotide affinity to nucleic acid targets. RNA 5, 1458–1469.

    Article  PubMed  CAS  Google Scholar 

  28. Mathews, D. H., Sabina, J., Zuker, M. &; Turner, D. H. (1999). Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J. Mol. Biol. 288, 911–940.

    Article  PubMed  CAS  Google Scholar 

  29. Innis, M. &; Gelfand, D. H. (1999). Optimization of PCR: conversations between Michael and David. In PCR Applications: Protocols for Functional Genomics (Innis, M., Gelfand, D. H. &; Sninsky, J. J., eds), pp. 3–22. Academic Press, New York.

    Google Scholar 

  30. Henegariu, O., Heerema, N. A., Dlouhy, S. R., Vance, G. H. &; Vogt, P. H. (1997). Multiplex PCR: critical parameters and step-by-step protocol. Biotechniques 23, 504–511.

    PubMed  CAS  Google Scholar 

  31. Ishii, K. &; Fukui, M. (2001). Optimization of annealing temperature to reduce bias caused by a primer mismatch in multitemplate PCR. Appl. Environ. Microbiol. 67, 3753–3755.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press

About this protocol

Cite this protocol

SantaLucia, J. (2007). Physical Principles and Visual-OMP Software for Optimal PCR Design. In: Yuryev, A. (eds) PCR Primer Design. Methods in Molecular Biology™, vol 402. Humana Press. https://doi.org/10.1007/978-1-59745-528-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-528-2_1

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-725-9

  • Online ISBN: 978-1-59745-528-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics