Skip to main content

The Flexible Pocketome Engine for Structural Chemogenomics

  • Protocol
  • First Online:
Chemogenomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 575))

Summary

Biological metabolites, substrates, cofactors, chemical probes, and drugs bind to flexible pockets in multiple biological macromolecules to exert their biological effect. The rapid growth of the structural databases and sequence data, including SNPs and disease-related genome modifications, complemented by the new cutting-edge 3D docking, scoring, and profiling methods has created a unique opportunity to develop a comprehensive structural map of interactions between any small molecule and biopolymers. Here we demonstrate that a comprehensive structural genomics engine can be built using multiple pocket conformations, experimentally determined or generated with a variety of modeling methods, and new efficient ensemble docking algorithms. In contrast to traditional ligand-activity-based engines trained on known chemical structures and their activities, the structural pocketome and docking engine will allow prediction of poses and activities for new, previously unknown, protein binding sites, and new, previously uncharacterized, chemical scaffolds. This de novo structure-based activity prediction engine may dramatically accelerate the discovery of potent and specific therapeutics with reduced side effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hendlich, M., Bergner, A., Gunther, J., and Klebe, G. (2003) Relibase: design and development of a database for comprehensive analysis of protein-ligand interactions. J. Mol. Biol. 326, 607–620.

    Article  PubMed  CAS  Google Scholar 

  2. Kuhn, D., Weskamp, N., Hullermeier, E., and Klebe, G. (2007) Functional classification of protein kinase binding sites using Cavbase. ChemMedChem 2, 1432–1447.

    Article  PubMed  CAS  Google Scholar 

  3. An, J., Totrov, M., and Abagyan, R. (2005) Pocketome via comprehensive identification and classification of ligand binding envelopes. Mol. Cell Proteomics 4, 752–761.

    Article  PubMed  CAS  Google Scholar 

  4. Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., and Bourne, P. E. (2000) The Protein Data Bank. Nucleic Acids Res 28, 235–242.

    Article  PubMed  CAS  Google Scholar 

  5. Cavasotto, C. N., Orry, A. J. W., Murgolo, N. J., Czarniecki, M. F., Kocsi, S. A., Hawes, B. E., Neill, K. A., Hine, H., Burton, M. S., Voigt, J. H., Abagyan, R. A., Bayne, M. L., and Monsma, F. J. (2008) Discovery of novel chemotypes to a G-protein-coupled receptor through ligand-steered homology modeling and structure-based virtual screening. J. Med. Chem. 51, 581–588.

    Article  PubMed  CAS  Google Scholar 

  6. Bisson, W. H., Cheltsov, A. V., Bruey-Sedano, N., Lin, B., Chen, J., Goldberger, N., May, L. T., Christopoulos, A., Dalton, J. T., Sexton, P. M., Zhang, X. K., and Abagyan, R. (2007) Discovery of antiandrogen activity of nonsteroidal scaffolds of marketed drugs. Proc. Natl. Acad. Sci. U.S.A. 104, 11927–11932.

    Article  PubMed  CAS  Google Scholar 

  7. Cavasotto, C. N., Orry, A. J. W., and Abagyan, R. A. (2003) Structure-based identification of binding sites, native ligands and potential inhibitors for G-protein coupled receptors. Proteins 51, 423–433.

    Article  PubMed  CAS  Google Scholar 

  8. Word, J. M., Lovell, S. C., Richardson, J. S., and Richardson, D. C. (1999) Asparagine and glutamine: using hydrogen atom contacts in the choice of side-chain amide orientation. J. Mol. Biol. 285, 1735–1747.

    Article  PubMed  CAS  Google Scholar 

  9. Davis, A. M., St-Gallay, S. A., and Kleywegt, G. J. (2008) Limitations and lessons in the use of X-ray structural information in drug design. Drug Discov. Today 13, 831–841.

    Article  PubMed  CAS  Google Scholar 

  10. Rupp, B. and Segelke, B. (2001) Questions about the structure of the botulinum neurotoxin B light chain in complex with a target peptide. Nat. Struct. Biol. 8, 663–664.

    Article  PubMed  CAS  Google Scholar 

  11. Chang, G., Roth, C. B., Reyes, C. L., Pornillos, O., Chen, Y. J., and Chen, A. P. (2006) Retraction. Science 314, 1875.

    Article  PubMed  CAS  Google Scholar 

  12. Joosten, R. P. and Vriend, G. (2007) PDB improvement starts with data deposition. Science 317, 195–196.

    Article  PubMed  CAS  Google Scholar 

  13. Kleywegt, G. J. (2007) Crystallographic refinement of ligand complexes. Acta Crystallogr. D Biol. Crystallogr. 63, 94–100.

    Article  PubMed  Google Scholar 

  14. Kleywegt, G. J., Harris, M. R., Zou, J.-Y., Taylor, T. C., Wahlby, A., and Jones, T. A. (2004) The Uppsala electron-density server. Acta Crystallogr. D Biol. Crystallogr. 60, 2240–2249.

    Article  PubMed  Google Scholar 

  15. Brunger, A. T. and Karplus, M. (1988) Polar hydrogen positions in proteins: empirical energy placement and neutron diffraction comparison. Proteins 4, 148–156.

    Article  PubMed  CAS  Google Scholar 

  16. Hooft, R. W., Sander, C., and Vriend, G. (1996) Positioning hydrogen atoms by optimizing hydrogen-bond networks in protein structures. Proteins 26, 363–376.

    Article  PubMed  CAS  Google Scholar 

  17. Spassov, V. Z. and Yan, L. A. (2008) Fast and accurate computational approach to protein ionization. Protein Sci. 17, 1955–1970.

    Article  PubMed  CAS  Google Scholar 

  18. Labute, P. (2009) Protonate3D: assignment of ionization states and hydrogen coordinates to macromolecular structures. Proteins 75, 187–205.

    Article  PubMed  CAS  Google Scholar 

  19. Labute, P. (2008) The generalized Born/volume integral implicit solvent model: estimation of the free energy of hydration using London dispersion instead of atomic surface area. J. Comput. Chem. 29, 1693–1698.

    Article  PubMed  CAS  Google Scholar 

  20. Abagyan, R. and Totrov, M. (1994) Biased probability Monte Carlo conformational searches and electrostatic calculations for peptides and proteins. J. Mol. Biol. 235, 983–1002.

    Article  PubMed  CAS  Google Scholar 

  21. Bottegoni, G., Kufareva, I., Totrov, M., and Abagyan, R. (2008) A new method for ligand docking to flexible receptors by dual alanine scanning and refinement (SCARE). J. Comput. Aided Mol. Des. 22, 311–325.

    Article  PubMed  CAS  Google Scholar 

  22. Reynolds, K., Katritch, V., and Abagyan, R. (2009) Identifying conformational changes of {beta}-2 adrenoceptor that enable accurate prediction of ligand/receptor interactions and screening for GPCR modulators. J. Comput. Aided Mol. Des. 23, 273–288.

    Article  PubMed  CAS  Google Scholar 

  23. Reynolds, K., Katritch, V., Abagyan, R. (2008) 3D structure and modeling of GPCRs: implications for drug discovery. In Shifting Paradigms in G-Protein Coupled Receptors, Gilchrist, Ed. Willey & Sons, Ltd.

    Google Scholar 

  24. Kufareva, I., Abagyan, R. (2009) Predicting Molecular Interactions in Structural Proteomics. In Computational Protein-Protein Interactions, Nussinov, R., Schreiber, G., Eds. Taylor and Francis, CRC press.

    Google Scholar 

  25. Bairoch, A., Apweiler, R., Wu, C. H., Barker, W. C., Boeckmann, B., Ferro, S., Gasteiger, E., Huang, H., Lopez, R., Magrane, M., Martin, M. J., Natale, D. A., O’Donovan, C., Redaschi, N., and Yeh, L.-S. L. (2005) The universal protein resource (UniProt). Nucleic Acids Res. 33, D154–D159.

    Article  PubMed  CAS  Google Scholar 

  26. Boeckmann, B., Blatter, M.-C., Famiglietti, L., Hinz, U., Lane, L., Roechert, B., and Bairoch, A. (2005) Protein variety and functional diversity: Swiss-Prot annotation in its biological context. C. R. Biol. 328, 882–899.

    Article  PubMed  CAS  Google Scholar 

  27. McLachlan, A. D. (1979) Gene duplications in the structural evolution of chymotrypsin. J. Mol. Biol. 128, 49–79.

    Article  PubMed  CAS  Google Scholar 

  28. Laudet, B. A., Barette, C., Dulery, V., Renaudet, O., Dumy, P., Metz, A., Prudent, R., Deshiere, A., Dideberg, O., Filhol, O., and Cochet, C. (2007) Structure-based design of small peptide inhibitors of protein kinase CK2 subunit interaction. Biochem. J. 408, 363–373.

    Article  PubMed  CAS  Google Scholar 

  29. Mallya, M., Phillips, R. L., Saldanha, S. A., Gooptu, B., Brown, S. C. L., Termine, D. J., Shirvani, A. M., Wu, Y., Sifers, R. N., Abagyan, R., and Lomas, D. A. (2007) Small molecules block the polymerization of Z alpha1-antitrypsin and increase the clearance of intracellular aggregates. J. Med. Chem. 50, 5357–5363.

    Article  PubMed  CAS  Google Scholar 

  30. Abagyan, R., Batalov, S., Cardozo, T., Totrov, M., Webber, J., and Zhou, Y. (1997) Homology modeling with internal coordinate mechanics: deformation zone mapping and improvements of models via conformational search. Proteins Suppl 1, 29–37.

    Google Scholar 

  31. Kufareva, I. and Abagyan, R. (2008) Type-II kinase inhibitor docking, screening, and profiling using modified structures of active kinase states. J. Med. Chem. 51, 7921–7932.

    Article  PubMed  CAS  Google Scholar 

  32. Kufareva, I., Laudet, B., Cochet, C., Abagyan, R. (2008) Structure-based discovery of small molecules that modulate kinase activity by disrupting the subunit interaction: application to CK2. Protein Sci 17, Suppl. 1, 265.

    Google Scholar 

  33. Kufareva, I. and Abagyan, R. (2008) Strategies to overcome the induced fit effects in molecular docking. In: Hansmann, U. H. E., Meinke, J. H., Mohanty, S., Nadler, W., and Zimmermann, O. (eds.) From Computational Biophysics to Systems Biology (CBSB08). H John von Neumann Institute for Computing (NIC), Jülich, pp. 1–6.

    Google Scholar 

  34. Totrov, M. and Abagyan, R. (2001) Protein-ligand docking as an energy optimization problem. In: Raffa, R. B. (ed.) Drug-Receptor Thermodynamics: Introduction and Applications. Willey, Hoboken, pp. 603–624.

    Google Scholar 

  35. Abagyan, R., Totrov, M., and Kuznetsov, D. A. (1994) ICM: a new method for protein modeling and design: applications to docking and structure prediction from the distorted native conformation. J. Comput. Chem. 15, 488–506.

    Article  CAS  Google Scholar 

  36. Nemethy, G., Gibson, K. D., Palmer, K. A., Yoon, C. N., Paterlini, G., Zagari, A., Rumsey, S., and Scheraga, H. A. (1992) Energy parameters in polypeptides. 10. Improved geometrical parameters and nonbonded interactions for use in the ECEPP/3 algorithm, with application to proline-containing peptides. J. Phys. Chem. 96, 6472–6484.

    Article  CAS  Google Scholar 

  37. Totrov, M. and Abagyan, R. (1997) Flexible protein-ligand docking by global energy optimization in internal coordinates. Proteins 29, 215–220.

    Article  Google Scholar 

  38. Totrov, M. and Abagyan, R. (1999) Derivation of sensitive discrimination potential for virtual ligand screening. In: Proceedings of the Third Annual International Conference on Computational Molecular Biology, Association for Computing Machinery, Lyon.

    Google Scholar 

  39. Schapira, M., Totrov, M., and Abagyan, R. (1999) Prediction of the binding energy for small molecules, peptides and proteins. J. Mol. Recognit. 12, 177–190.

    Article  PubMed  CAS  Google Scholar 

  40. Bordner, A. J. and Abagyan, R.(2006) Ab initio prediction of peptide-MHC binding geometry for diverse class I MHC allotypes. Proteins 63, 512–526.

    Article  PubMed  CAS  Google Scholar 

  41. Bursulaya, B. D., Totrov, M., Abagyan, R., and Brooks, C. L. III. (2003) Comparative study of several algorithms for flexible ligand docking. J. Comput. Aided Mol. Des. 17, 755–763.

    Article  PubMed  CAS  Google Scholar 

  42. Clark, R. D. and Webster-Clark, D. J. (2008) Managing bias in ROC curves. J. Comput. Aided Mol. Des. 22, 141–146.

    Article  PubMed  CAS  Google Scholar 

  43. Moitessier, N., Englebienne, P., Lee, D., Lawandi, J., and Corbeil, C. R. (2007) Towards the development of universal, fast and highly accurate docking/scoring methods: a long way to go. Br. J. Pharmacol. 153, S7–S26.

    Article  PubMed  Google Scholar 

  44. Nelder, J. A. and Mead, R. (1965) A simplex method for function minimization. Comput. J. 7, 308–313.

    Google Scholar 

  45. Bottegoni, G., Kufareva, I., Totrov, M., Abagyan, R. (2009) Four-Dimensional Docking: A Fast and Accurate Account of Discrete Receptor Flexibility in Ligand Docking. Journal of Medicinal Chemistry 52, 397–406.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Giovanni Bottegoni, Maxim Totrov, Jianghong An, Seva Katritch, Sojung Park, Anton Cheltsov, William Bisson, George Nicola, and Manuel Rueda for their help, discussions, images, and creative contributions into the methods reported and described in this chapter. This work was partially funded by NIH/NIGMS grants 5-R01-GM071872-02 and 1-R01-GM074832-01A1.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Abagyan, R., Kufareva, I. (2009). The Flexible Pocketome Engine for Structural Chemogenomics. In: Jacoby, E. (eds) Chemogenomics. Methods in Molecular Biology, vol 575. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-274-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-274-2_11

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-273-5

  • Online ISBN: 978-1-60761-274-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics