Skip to main content
Log in

Identifying conformational changes of the β2 adrenoceptor that enable accurate prediction of ligand/receptor interactions and screening for GPCR modulators

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

The new β2 Adrenoceptor (β2AR) crystal structures provide a high-resolution snapshot of receptor interactions with two particular partial inverse agonists, (−)-carazolol and timolol. However, both experimental and computational studies of GPCR structure are significantly complicated by the existence of multiple conformational states coupled to ligand type and receptor activity. Agonists and antagonists induce or stabilize distinct changes in receptor structure that mediate a range of pharmacological activities. In this work, we (1) established that the existing β2AR crystallographic conformers can be extended to describe ligand/receptor interactions for additional antagonist types, (2) generated agonist-bound receptor conformations, and (3) validated these models for agonist and antagonist virtual ligand screening (VLS). Using a ligand directed refinement protocol, we derived a single agonist-bound receptor conformation that selectively retrieved a diverse set of full and partial β2AR agonists in VLS trials. Additionally, the impact of extracellular loop two conformation on VLS was assessed by docking studies with rhodopsin-based β2AR homology models, and loop-deleted receptor models. A general strategy for constructing and selecting agonist-bound receptor pocket conformations is presented, which may prove broadly useful in creating agonist and antagonist bound models for other GPCRs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA, Trong IL, Teller DC, Okada T, Stenkamp RE, Yamamoto M, Miyano M (2000) Science 289:739. doi:10.1126/science.289.5480.739

    Article  CAS  PubMed  Google Scholar 

  2. Park JH, Scheerer P, Hofmann KP, Choe H–W, Ernst OP (2008) Nature 454:183–187. doi:10.1038/nature07063

    Article  CAS  PubMed  Google Scholar 

  3. Warne T, Serrano-Vega MJ, Baker JG, Moukhametzianov R, Edwards PC, Henderson R, Leslie AG, Tate CG, Schertler GF (2008) Nature 454:486–491. doi:10.1038/nature07101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cherezov V, Rosenbaum DM, Hanson MA, Rasmussen SGF, Thian FS, Kobilka TS, Choi H-J, Kuhn P, Weis WI, Kobilka BK, Stevens RC (2007) Science 318:1258. doi:10.1126/science.1150577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hanson MA, Cherezov V, Griffith MT, Roth CB, Jaakola V-P, Chien EYT, Velasquez J, Kuhn P, Stevens RC (2008) Structure 16:897. doi:10.1016/j.str.2008.05.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kenakin T (2003) Trends Pharmacol Sci 24:346. doi:10.1016/S0165-6147(03)00167-6

    Article  CAS  PubMed  Google Scholar 

  7. Kobilka BK, Deupi X (2007) Trends Pharmacol Sci 28:397. doi:10.1016/j.tips.2007.06.003

    Article  CAS  PubMed  Google Scholar 

  8. Urban JD, Clarke WP, von Zastrow M, Nichols DE, Kobilka B, Weinstein H, Javitch JA, Roth BL, Christopoulos A, Sexton PM, Miller KJ, Spedding M, Mailman RB (2007) J Pharmacol Exp Ther 320:1. doi:10.1124/jpet.106.104463

    Article  CAS  PubMed  Google Scholar 

  9. Schwartz TW, Frimurer TM, Holst B, Rosenkilde MM, Elling CE (2006) Annu Rev Pharmacol Toxicol 46:481. doi:10.1146/annurev.pharmtox.46.120604.141218

    Article  CAS  PubMed  Google Scholar 

  10. Bottegoni G, Kufareva I, Totrov M, Abagyan R (2008) J Comput Aided Mol Des 22:311. doi:10.1007/s10822-008-9188-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bissantz C, Bernard P, Hibert M, Rognan D (2003) Proteins 50:5. doi:10.1002/prot.10237

    Article  CAS  PubMed  Google Scholar 

  12. Ballesteros JA, Weinstein H (1995) Methods Neurosci 25:366. doi:10.1016/S1043-9471(05)80049-7

    Article  CAS  Google Scholar 

  13. Rasmussen SGF, Choi H-J, Rosenbaum DM, Kobilka TS, Thian FS, Edwards PC, Burghammer M, Ratnala VRP, Sanishvili R, Fischetti RF, Schertler GFX, Weis WI, Kobilka BK (2007) Nature 450:383. doi:10.1038/nature06325

    Article  CAS  PubMed  Google Scholar 

  14. Rosenbaum DM, Cherezov V, Hanson MA, Rasmussen SGF, Thian FS, Kobilka TS, Choi H-J, Yao X-J, Weis WI, Stevens RC, Kobilka BK (2007) Science 318:1266. doi:10.1126/science.1150609

    Article  CAS  PubMed  Google Scholar 

  15. Bhattacharya S, Hall SE, Li H, Vaidehi N (2008) Biophys J 94:2027. doi:10.1529/biophysj.107.117648

    Article  CAS  PubMed  Google Scholar 

  16. Gouldson PR, Kidley NJ, Bywater RP, Psaroudakis G, Brooks HD, Diaz C, Shire D, Reynolds CA (2004) Proteins 56:67. doi:10.1002/prot.20108

    Article  CAS  PubMed  Google Scholar 

  17. Bisson WH, Cheltsov AV, Bruey-Sedano N, Lin B, Chen J, Goldberger N, May LT, Christopoulos A, Dalton JT, Sexton PM, Zhang X-K, Abagyan R (2007) Proc Natl Acad Sci USA 104:11927. doi:10.1073/pnas.0609752104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cavasotto CN, Orry AJW, Murgolo NJ, Czarniecki MF, Kocsi SA, Hawes BE, O’Neill KA, Hine H, Burton MS, Voigt JH, Abagyan RA, Bayne ML, Monsma FJ (2008) J Med Chem 51:581. doi:10.1021/jm070759m

    Article  CAS  PubMed  Google Scholar 

  19. Mehler EL, Hassan SA, Kortagere S, Weinstein H (2006) Proteins. Struct Funct Bioinformatics 64:673. doi:10.1002/prot.21022

    Article  CAS  Google Scholar 

  20. Kortagere S, Roy A, Mehler E (2006) J Comput Aided Mol Des 20:427. doi:10.1007/s10822-006-9056-0

    Article  CAS  PubMed  Google Scholar 

  21. Abagyan R, Totrov M (1994) J Mol Biol 235:983. doi:10.1006/jmbi.1994.1052

    Article  CAS  PubMed  Google Scholar 

  22. Nemethy G, Gibson KD, Palmer KA, Yoon CN, Paterlini G, Zagari A, Rumsey S, Scheraga HA (1992) J Phys Chem 96:6472. doi:10.1021/j100194a068

    Article  CAS  Google Scholar 

  23. Halgren TA (1996) J Comput Chem 17:490. doi:10.1002/(SICI)1096-987X(199604)17:5/6<490::AID-JCC1>3.0.CO;2-P

    Article  CAS  Google Scholar 

  24. Raffa RB (ed) (2001) Drug-receptor thermodynamics introduction and applications. Wiley-VCH, NewYork

    Google Scholar 

  25. Totrov M (2008) Chem Biol Drug Des 71:15

    Article  CAS  PubMed  Google Scholar 

  26. Abagyan RA, Batalov S (1997) J Mol Biol 273:355. doi:10.1006/jmbi.1997.1287

    Article  CAS  PubMed  Google Scholar 

  27. Totrov M, Abagyan R (1997) Proteins Suppl 1:215. doi:10.1002/(SICI)1097-0134(1997)1+<215::AID-PROT29>3.0.CO;2-Q

    Article  Google Scholar 

  28. Okuno Y, Tamon A, Yabuuchi H, Niijima S, Minowa Y, Tonomura K, Kunimoto R, Feng C (2008) Nucleic Acids Res 36:D907. doi:10.1093/nar/gkm948

    Article  CAS  PubMed  Google Scholar 

  29. Guha R, Howard MT, Hutchison GR, Murray-Rust P, Rzepa H, Steinbeck C, Wegner J, Willighagen EL (2006) J Chem Inf Model 46:991. doi:10.1021/ci050400b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Topiol S, Sabio M (2008) Bioorg Med Chem Lett 18:1598. doi:10.1016/j.bmcl.2008.01.063

    Article  CAS  PubMed  Google Scholar 

  31. Bissantz C, Wolfgang CS, Stahl GM (2005) Proteins. Struct Funct Bioinformatics 61:938. doi:10.1002/prot.20651

    Article  CAS  Google Scholar 

  32. Chen JZ, Wang J, Xie XQ (2007) J Chem Inf Model 47:1626. doi:10.1021/ci7000814

    Article  CAS  PubMed  Google Scholar 

  33. Evers A, Hessler G, Matter H, Klabunde T (2005) J Med Chem 48:5448. doi:10.1021/jm050090o

    Article  CAS  PubMed  Google Scholar 

  34. Evers A, Klabunde T (2005) J Med Chem 48:1088. doi:10.1021/jm0491804

    Article  CAS  PubMed  Google Scholar 

  35. Krystek SR, Kimura SR, Tebben AJ, Langley DR (2006) J Comput Aided Mol Des 20:463. doi:10.1007/s10822-006-9065-z

    Article  CAS  PubMed  Google Scholar 

  36. Kimura SR, Tebben AJ, Langley DR (2008) Proteins. Struct Funct Bioinformatics 71:1919–1929. doi:10.1002/prot.21906

    Article  CAS  Google Scholar 

  37. Patny A, Desai PV, Avery MA (2006) Proteins. Struct Funct Bioinformatics 65:824. doi:10.1002/prot.21196

    Article  CAS  Google Scholar 

  38. Varady J, Wu X, Fang X, Min J, Hu Z, Levant B, Wang S (2003) J Med Chem 46:4377. doi:10.1021/jm030085p

    Article  CAS  PubMed  Google Scholar 

  39. Costanzi S (2008) J Med Chem 51:2907–2914. doi:10.1021/jm800044k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Strader CD, Candelore MR, Hill WS, Sigal IS, Dixon RA (1989) J Biol Chem 264:13572

    Article  CAS  PubMed  Google Scholar 

  41. Liapakis G, Ballesteros JA, Papachristou S, Chan WC, Chen X, Javitch JA (2000) J Biol Chem 275:37779. doi:10.1074/jbc.M002092200

    Article  CAS  PubMed  Google Scholar 

  42. Avlani VA, Gregory KJ, Morton CJ, Parker MW, Sexton PM, Christopoulos A (2007) J Biol Chem 282:25677. doi:10.1074/jbc.M702311200

    Article  CAS  PubMed  Google Scholar 

  43. Shi L, Javitch JA (2004) Proc Natl Acad Sci USA 101:440. doi:10.1073/pnas.2237265100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. de Graaf C, Foata N, Engkvist O, Rognan D (2008) Proteins. Struct Funct Bioinformatics 71:599. doi:10.1002/prot.21724

    Article  CAS  Google Scholar 

  45. Ghanouni P, Gryczynski Z, Steenhuis JJ, Lee TW, Farrens DL, Lakowicz JR, Kobilka BK (2001) J Biol Chem 276:24433. doi:10.1074/jbc.C100162200

    Article  CAS  PubMed  Google Scholar 

  46. de Graaf C, Rognan D (2008) J Med Chem 51:4978. doi:10.1021/jm800710x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

K.A.R. and R.A. gratefully acknowledge support from the National Institutes of Health (GM074832).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruben Abagyan.

Electronic supplementary material

Following files are unfortunately not in the Publisher's archive anymore:

  • (PDB 355 kb)

  • (PDB 560 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reynolds, K.A., Katritch, V. & Abagyan, R. Identifying conformational changes of the β2 adrenoceptor that enable accurate prediction of ligand/receptor interactions and screening for GPCR modulators. J Comput Aided Mol Des 23, 273–288 (2009). https://doi.org/10.1007/s10822-008-9257-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-008-9257-9

Keywords

Navigation