Skip to main content
Log in

Improvement of the drawability based on the surface friction stir process of AA5052-H32 automotive sheets

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Based on the imperative social demand for lighter vehicles, lightweight materials such as aluminum alloys are expected to replace conventional steels in many automotive applications. In automotive parts manufacturing, most of the components produced in conventional stamping operations are geometrically complex as the blanks are subjected to both stretching and drawing deformations. However, aluminum alloys have intrinsic drawbacks, such as the inferior formability of these materials, although the effects of the weight reduction in terms of performance are highly promising. In an effort to improve the formability of aluminum alloy sheets, the surface friction stir process is proposed in this study. This process locally modifies the surface of automotive aluminum alloy sheets via stirring and advancing on the surface of the sheet, similar to the Friction Stir Welding (FSW) process that utilizes a probe without a pin. When the surface of the sheet is modified locally by stirring, dynamic recrystallization due to the severe shear deformation along with heat resulting from the friction occur due to changes in the micro-structure and mechanical properties in the stirred zone, while the dislocation density and grain size refinement are curtailed. In this work, the drawability performance of AA5052-H32 sheets (thickness 1.5 mm) that were welded using the surface friction stir process was experimentally and numerically investigated in cylindrical cup drawing tests. When applied to AA5052-H32 automotive sheets, the surface friction stir process improved the drawability of the entire aluminum alloy sheet. For numerical simulations, the non-quadratic anisotropic yield function Yld2000-2d was employed along with isotropic hardening, while the formability was evaluated by utilizing theoretical forming limit diagrams (FLD) based on Hill's bifurcation and M-K theories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. W. Thomas, E. D. Nicholas, J. C. Needham, M. G. Murch, P. Templesmith, and C. J. Dawes, GB Patent Applications No. 9125978.8 (1991), US Patent No. 5460317 (1995).

  2. W. S. Miller, L. Zhuang, J. Bottema, A. J. Wittebrood, P. De Smet, A. Haszler, and A. Vieregge, Mater. Sci. Eng. A 280, 37 (2000).

    Article  Google Scholar 

  3. Y. S. Sato, Y. Sugiura, Y. Shoji, S. H. Park, H, Kokawa, and K. Ikeda, Mater. Sci. Eng. A 369, 138 (2004).

    Article  CAS  Google Scholar 

  4. M. Jansson, L. Nilsson, and K. Simonsson, Int. J. Plasticity 21, 1041 (2005).

    Article  MATH  CAS  Google Scholar 

  5. R. Smerd, S. Winkler, C. Salisbury, M. Worswick, D. Lloyd, and M. Finn, Int. J. Impact Eng. 32, 541 (2005).

    Article  Google Scholar 

  6. C. G. Lee, S. Park, K. Chung, H. N. Han, and S. J. Kim, Proc. of the Twentieth Conf. on Mechanical Behaviors of Materials (eds. D. I. Kwon, Y. J, Kim, D. H. Shin, and S. I. Hong), p. 116–123, Korean Institute of Metals and Materials, Busan, Korea (2006).

    Google Scholar 

  7. M. Jain, J. Allin, and M. J. Bull, Mater. Sci. Eng. A 256, 69 (1998).

    Article  Google Scholar 

  8. C. G. Lee, S. J. Kim, H. N. Han, K. Chung, and S. Park, Korea Patent No. 10-0680183-0000 (2007).

  9. S. H. Kang, H. S. Chung, H. N. Han, K. H. Oh, C. G. Lee, and S. J. Kim, Scri. Mater. 57, 17 (2007).

    Article  CAS  Google Scholar 

  10. F. Barlat, J. C. Brem, J. W. Yoon, K. Chung, R. E. Dick, S. H. Choi, F. Pourboghrat, E. Chu, and D. J. Lege, Int. J. Plasticity 19, 1297 (2003).

    Article  MATH  CAS  Google Scholar 

  11. R. Hill, J. Mech. Phys. Solid 1, 19 (1952).

    Article  ADS  Google Scholar 

  12. Z. Marciniak, and K. Kuczynski, Int. J. Mech. Sci. 9, 609 (1967).

    Article  Google Scholar 

  13. ABAQUS User's manual (version 6.5), Hibbit, Karlsson & Sorensen Inc., USA (2005).

  14. K. Chung, and O. Richmond, Int. J. Plasticity 9, 907 (1993).

    Article  MATH  Google Scholar 

  15. J. W. Yoon, D. Y. Yang, and K. Chung, Int. J. Plasticity 16, 595 (2000).

    Article  MATH  Google Scholar 

  16. C. Kaye, and T. Laby, Table of Physical and Chemical Constants, p. 29, Longman, New York (1986).

    Google Scholar 

  17. D. Kim, M. G. Lee, C. Kim, M. L. Wenner, R. H. Wagoner, F. Barlat, K. Chung, J. R. Youn, and T. J. Kang, Met. Mater.-Int. 9, 561 (2003).

    Article  Google Scholar 

  18. J. Kim, W. Lee, D. Kim, J. Kong, C. Kim, M. L. Wenner, and K. Chung, Met. Mater.-Int. 12, 293 (2006).

    Article  CAS  Google Scholar 

  19. W. F. Hosford, J. Appl. Mech. Trans. ASME 39, 607 (1972).

    Google Scholar 

  20. R. K. Verma, and S. Chandra, J. Mat. Proc. Tech. 172, 218 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwansoo Chung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, S., Lee, C.G., Han, H.N. et al. Improvement of the drawability based on the surface friction stir process of AA5052-H32 automotive sheets. Met. Mater. Int. 14, 47–57 (2008). https://doi.org/10.3365/met.mat.2008.02.047

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.3365/met.mat.2008.02.047

Keywords

Navigation