Skip to main content
Log in

Fractionation of Dissolved Organic Matter on Coupled Reversed-Phase Monolithic Columns and Characterisation Using Reversed-Phase Liquid Chromatography-High Resolution Mass Spectrometry

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

Eleven Onyx monolithic C18 columns (100 x 3 mm) were connected in series to obtain a high-capacity reversed-phase HPLC column providing 110,000 theoretical plates. The column was used to fractionate a complex mixture of semi-polar and apolar components within marine dissolved organic matter (DOM), isolated using solid-phase extraction (SPE) on poly(styrene–divinylbenzene) cartridges, and Suwannee River natural organic matter, isolated by reverse osmosis. In each case, 15 isolated fractions were further separated using a second-dimension reversed-phase HPLC coupled with high-resolution mass spectrometry. Successful fractionation of the major compositional materials within DOM (i.e. carboxylic-rich alicyclic molecules, CRAM) in order of decreasing polarity was confirmed. Upon formulae assignment, homologous series of compounds were fractionated according to decreasing O/C ratio and increasing H/C ratio. Different compounds with the same exact masses were separated across six fractions, highlighting the immensely complex nature of the material, with the presence of potentially hundreds of molecules for each molecular formula. Both samples showed clear compositional differences not only related to source (seawater or freshwater), but also to the extraction method applied (SPE or reverse osmosis).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Jiao N, Azam F, Sanders S (eds) (2011) Microbial carbon pump in the ocean. Science, AAAS Custom Publishing

  2. Amon RMW, Benner R (1994) Nature 369:549

    Article  CAS  Google Scholar 

  3. Hansell DA, Carlson CA (eds) (2014) Biogeochemistry of marine dissolved organic matter. 2nd edn. Academic press, London

  4. Mopper K, Zhou X, Kieber RJ, Kieber DJ, Sikorski RJ, Jones RD (1991) Nature 353:60

    Article  CAS  Google Scholar 

  5. Dalzell BJ, Minor EC, Mopper KM (2009) Org Geochem 40:243

    Article  CAS  Google Scholar 

  6. Nawrocki MP, Karl DM (1989) Mar Ecol Prog Ser 57:35

    Article  CAS  Google Scholar 

  7. Green NW, Perdue EM, Aiken GR, Butler KD, Chen H, Dittmar T, Niggemann J, Stubbins A (2014) Mar Chem 161:14

    Article  CAS  Google Scholar 

  8. Perminova IV, Dubinenkov IV, Kononikhin AS, Konstantinov AI, Zherebker AY, Andzhushev MM, Lebedev VA, Bulygina E, Holmes RM, Kostyukevich YI (2014) Environ Sci Technol 48:7461

    Article  CAS  Google Scholar 

  9. Medeiros PM, Simoneit BR (2007) J Chromatogr A 1141:271

    Article  CAS  Google Scholar 

  10. Louchouarn P, Amon RMW, Duan S, Pondell C, Seward SM, White N (2010) Mar Chem 118:85

    Article  CAS  Google Scholar 

  11. Lang SQ, Bernasconi SM, Früh-Green GL (2012) Rapid Commun Mass Spectrom 26:9

    Article  CAS  Google Scholar 

  12. Parlanti E, Morin B, Vacher L (2002) Org Geochem 33:221

    Article  CAS  Google Scholar 

  13. Dittmar T, Whitehead K, Minor EC, Koch BP (2007) Mar Chem 107:378

    Article  CAS  Google Scholar 

  14. Koch BP, Ludwichowski K-U, Kattner G, Dittmar T, Witt M (2008) Mar Chem 111:233

    Article  CAS  Google Scholar 

  15. Lang SQ, Bernasconi SM, Fruh-Green GL (2012) Rapid Commun Mass Spectrom 26:9

    Article  CAS  Google Scholar 

  16. Hertkorn N, Benner R, Frommberger M, Schmittkopplin P, Witt M, Kaiser K, Kettrup A, Hedges J (2006) Geochim Cosmochim Acta 70:2990

    Article  CAS  Google Scholar 

  17. Gwen MJS, Woods C, Simpson AJ (2012) Water Res 46:3398

    Article  Google Scholar 

  18. Lam B, Baer A, Alaee M, Lefebvre B, Moser A, Williams A, Simpson AJ (2007) Environ Sci Technol 41:8240

    Article  CAS  Google Scholar 

  19. Stenson AC, Ruddy BM, Bythell BJ (2014) Int J Mass Spectrom 360:45

    Article  CAS  Google Scholar 

  20. Capley EN, Tipton JD, Marshall AG, Stenson AC (2010) Anal Chem 82:8194

    Article  CAS  Google Scholar 

  21. Stenson AC, Marshall AG, Cooper WT (2003) Anal Chem 75:1275

    Article  CAS  Google Scholar 

  22. Woods GC, Simpson MJ, Simpson AJ (2012) Water Res 46:3398

    Article  CAS  Google Scholar 

  23. Woods GC, Simpson MJ, Koerner PJ, Napoli A, Simpson AJ (2011) Environ Sci Technol 45:3880

    Article  CAS  Google Scholar 

  24. Everett CR, Chin Y-P, Aiken G (1999) Limnol Oceanogr 44:1316

    Article  CAS  Google Scholar 

  25. Minor EC, Simjouw JP, Boon JJ, Kerkhoff AE, van der Horst J (2002) Mar Chem 78:75

    Article  CAS  Google Scholar 

  26. Her N, Amy G, McKnight D, Sohn J, Yoon Y (2003) Water Res 37:4295

    Article  CAS  Google Scholar 

  27. Panagiotopoulos C, Repeta DJ, Johnson CG (2007) Org Geochem 38:884

    Article  CAS  Google Scholar 

  28. Kaiser K, Benner R (2009) Mar Chem 113:63

    Article  CAS  Google Scholar 

  29. Simpson TL, Simpson AJ, Spraul MJ, Braumann M, Kingery U, Kelleher WL, Kelleher BP, Hayes MH (2004) Analyst 129:1216

    Article  CAS  Google Scholar 

  30. Mills GL, Quinn JG (1981) Mar Chem 10:93

    Article  CAS  Google Scholar 

  31. Mills GL, McFadden E, Quinn JG (1987) Mar Chem 20:313

    Article  CAS  Google Scholar 

  32. Liu Z, Sleighter RL, Zhong J, Hatcher PG (2011) Est Coast Shelf Sci 92:205

    Article  CAS  Google Scholar 

  33. Bones J, Duffy C, Macka M, Paull B (2008) Analyst 133:180

    Article  CAS  Google Scholar 

  34. Averett R, Leenheer J, McKnight D, Thorn K (1989) US Geological survey open file report 87

  35. Serkiz SM, Perdue EM (1990) Water Res 24:911

    Article  CAS  Google Scholar 

  36. Sun L, Perdue EM, McCarthy JF (1995) Water Res 29:1471

    Article  CAS  Google Scholar 

  37. Thorsten Dittmar BK, Hertkorn N, Kattner G (2008) Limnol Oceanogr Methods 6:230

    Article  Google Scholar 

  38. Wilde FD, Radtke DB, Gibs J, Iwatsubo RT (1998) Techniques of water-resources investigations, book 9, Geological Survey publication, US

  39. Sandron S, Rojas A, Wilson R, Davies NW, Haddad P, Shellie R, Nesterenko PN, Kelleher B (2015) B Paull Environ Sci Process Impacts 17:1531

    Article  CAS  Google Scholar 

  40. Sandron S, Nesterenko PN, McCaul MV, Kelleher B, Paull B (2014) J Sep Sci 37:135

    Article  CAS  Google Scholar 

  41. Scott RPW (2003) Preparative chromatography, book 12, Chrom-Ed Book Series. http://www.chromatography-online.org/books/preparative_chromatography/cc241/index.php. Accessed 17 May 2017

  42. Tivendale ND, Davies NW, Horne J, Ross JJ, Smith JA (2015) Aust J Chem 68:345

    CAS  Google Scholar 

  43. Koprivnjak JF, Pfromm PH, Ingall E, Vetter TA, Schmitt-Kopplin P, Hertkorn N, Frommberger M, Knicker H, Perdue EM (2009) Geochim et Cosmochim Acta 73:4215

    Article  CAS  Google Scholar 

  44. Vetter T, Perdue E, Ingall E, Koprivnjak J, Pfromm P (2007) Sep Purif Technol 56:383

    Article  CAS  Google Scholar 

  45. Koprivnjak JF, Perdue EM, Pfromm PH (2006) Water Res 40:3385

    Article  CAS  Google Scholar 

  46. Tfaily MM, Hodgkins S, Podgorski DC, Chanton JP, Cooper WT (2012) Anal Bioanal Chem 404:447

    Article  CAS  Google Scholar 

  47. Davies NW, Sandron S, Nesterenko PN, Paull B, Wilson R, Haddad P, Shellie R, Rojas A (2015) Environ Sci Process Impacts 17:495

    Article  CAS  Google Scholar 

  48. Kim S, Kramer RW, Hatcher PG (2003) Anal Chem 75:5336

    Article  CAS  Google Scholar 

  49. Koch B, Witt M, Engbrodt R, Dittmar T, Kattner G (2005) Geochim Cosmochim Acta 69:3299

    Article  CAS  Google Scholar 

  50. Alexandra AGM, Stenson C, William T (2003) Cooper. Anal Chem 75:1275

    Article  Google Scholar 

  51. Stenson AC (2008) Environ Sci Technol 42:2060

    Article  CAS  Google Scholar 

  52. Hertkorn N, Harir M, Koch B, Michalke B, Schmitt-Kopplin P (2013) Biogeosciences 10:1583

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported under Australian Research Council’s Discovery Projects funding scheme (Project Number DP130101518).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brett Paull.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Published in the topical collection 2nd ACROSS International Symposium on Advances in Separation Science (ASASS 2016) with guest editors Pavel Nesterenko and Brett Paull.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3227 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sandron, S., Davies, N.W., Wilson, R. et al. Fractionation of Dissolved Organic Matter on Coupled Reversed-Phase Monolithic Columns and Characterisation Using Reversed-Phase Liquid Chromatography-High Resolution Mass Spectrometry. Chromatographia 81, 203–213 (2018). https://doi.org/10.1007/s10337-017-3324-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-017-3324-0

Keywords

Navigation