Skip to main content
Log in

Fabrication of lotus-type porous stainless steel by continuous zone melting technique and mechanical property

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Lotus-type porous stainless steel (SUS304L) rods were fabricated by the continuous zone melting technique under a pressurized mixed gas of hydrogen and inert gas such as argon or helium. Pores with cylindrical shape, whose growth direction is parallel to the solidification direction, are observed in the rods. The dependence of the porosity and averaged pore diameter on the partial pressure of hydrogen or the total pressure and on the transference velocity of rods was investigated. It was found that the porosity increases with increasing partial pressure of hydrogen under a constant total pressure and the pore diameter decreases with increasing transference velocity. The maximum porosity was about 60 pct under the experimental conditions in the present work. The observation of the microstructure and the measurement of the tensile strength were also carried out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V.A. Tracey: Int. J. Powder Metall. Powder Technol., 1976, vol. 12, p. 25–35.

    Google Scholar 

  2. L. Albano-Muller: Powder Metall. Int., 1982, vol. 14, p. 73–79.

    Google Scholar 

  3. Handbook of Cellular Metals, H.P. Degischer and B. Kriszt, eds., Wiley-VCH Verlag GmbH, Weinheim, 2002.

    Google Scholar 

  4. M. Imabayashi, M. Ichimura, and Y. Kanno: Trans. JIM, 1983, vol. 24, pp. 93–100.

    CAS  Google Scholar 

  5. I. Svensson and H.S. Fredriksson: Proc. Int. Conf. Organised by the Applied Metallurgy and Metals Technology, Group of TMS, University of Warwick, Coventry, UK, 1980, pp. 376–80.

    Google Scholar 

  6. O. Knacke, H. Probst, and J. Wernekinck: Z. Metallkde., 1979, vol. 70, pp. 1–6.

    CAS  Google Scholar 

  7. L.V. Boiko, V.I. Shapovalov, and E.A. Chernykh: Metallurgiya, 1991, vol. 346, pp. 78–81.

    Google Scholar 

  8. A. Pattnaik, S.C. Sanday, C.L. Vold, and H.I. Aaronson: Mater. Res. Soc. Symp. Proc., 1995, vol. 371, pp. 371–76.

    CAS  Google Scholar 

  9. Y. Zheng, S. Sridhar, and K.C. Russel: Mater. Res. Soc. Symp. Proc., 1995, vol. 371, pp. 365–70.

    CAS  Google Scholar 

  10. H. Nakajima: Mater. Integration, 1999, vol. 12, pp. 37–44.

    CAS  Google Scholar 

  11. H. Nakajima: Boundary, 1999, vol. 15, pp. 9–11.

    Google Scholar 

  12. H. Nakajima: Production Technol., 1999, vol. 51, pp. 60–62.

    CAS  Google Scholar 

  13. H. Nakajima: J. High Temp. Soc., 2000, vol. 26, pp. 95–100.

    CAS  Google Scholar 

  14. H. Nakajima: Function Mater., 2000, vol. 20, pp. 27–34.

    CAS  Google Scholar 

  15. H. Nakajima, S.K. Hyun, K. Ohashi, K. Ota, and K. Murakami: Coll. Surfaces A: Physicochem. Eng. Aspects, 2001, vol. 179, pp. 209–14.

    Article  CAS  Google Scholar 

  16. H. Nakajima: Bull. Iron Steel Inst. Jpn., 2001, vol. 6, pp. 701–07.

    CAS  Google Scholar 

  17. S.K. Hyun, K. Murakami, and H. Nakajima: Mater. Sci. Eng., 2001, vol. A299, pp. 241–48.

    CAS  Google Scholar 

  18. S. Yamamura, H. Shiota, K. Murakami, and H. Nakajima: Mater. Sci. Eng., 2001, vol. A318, pp. 137–43.

    CAS  Google Scholar 

  19. S.K. Hyun and H. Nakajima: Mater. Trans., 2002, vol. 43, pp. 526–31.

    Article  CAS  Google Scholar 

  20. T. Aoki, T. Ikeda, and H. Nakajima: Mater. Trans., 2003, vol. 44, pp. 89–93.

    Article  CAS  Google Scholar 

  21. S.K. Hyun and H. Nakajima: Mater. Sci. Eng., 2003, vol. A340, pp. 258–64.

    Google Scholar 

  22. L.V. Boiko: Mater. Sci., 2000, vol. 36, pp. 506–12.

    Article  CAS  Google Scholar 

  23. S. Yamamura, S.K. Hyun, and H. Nakajima: Abstracts of the 126th Meeting of JIM, Japan Institute of Metals, Sendai, 2000, p. 413.

    Google Scholar 

  24. T. Ikeda and H. Nakajima: J. Jpn. Foundry Eng. Soc., 2002, vol. 74, pp. 812–16.

    CAS  Google Scholar 

  25. L.J. Gibson and M.F. Ashby: Cellular Solids, 2nd ed. Cambridge University Press, New York, NY, 1997, pp. 1–14.

    Google Scholar 

  26. K. Ota, K. Ohashi, and H. Nakajima: Mater. Sci. Eng., 2003, vol. A341, pp. 139–43.

    CAS  Google Scholar 

  27. Z. Xie, T. Ikeda, Y. Okuda, and H. Nakajima: J. Jpn. Inst. Met., 2003, vol. 67, pp. 708–13.

    CAS  Google Scholar 

  28. T. Ikeda, M. Tsukamoto, and H. Nakajima: Mater. Trans., 2002, vol. 43, pp. 2678–84.

    Article  CAS  Google Scholar 

  29. H. Nakajima, T. Ikeda, and S.K. Hyun: Cellular Metals: Manufacture, Properties and Applications, J. Banhart, N. Fleck, and A. Mortensen, eds., Verlag MIT Publications, Berlin, 2003, pp. 191–202.

    Google Scholar 

  30. S.K. Hyun and H. Nakajima: Mater. Lett., 2003, vol. 57, pp. 3149–54.

    Article  CAS  Google Scholar 

  31. Chronological Scientific Tables 2003, National Astronomical Observatory, ed., Maruzen Co Ltd., Tokyo, 2002, p. 404.

  32. S.K. Hyun and H. Nakajima: Abstracts of the 130th Meeting of JIM, Japan Institute of Metals, Sendai, 2002, p. 346.

    Google Scholar 

  33. A.R. Boccaccini, G. Ondracek, and E. Mombello: J. Mater. Sci. Lett., 1995, vol. 14, p. 534–36.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ikeda, T., Nakajima, H. & Aoki, T. Fabrication of lotus-type porous stainless steel by continuous zone melting technique and mechanical property. Metall Mater Trans A 36, 77–86 (2005). https://doi.org/10.1007/s11661-005-0140-1

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-005-0140-1

Keywords

Navigation