Skip to main content
Log in

Silver-particle-based surface-enhanced resonance Raman scattering spectroscopy for biomolecular sensing and recognition

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

We demonstrate in this work that 2-μm-sized Ag (μAg) powders can be used as a core material for constructing biomolecular sensing/recognition units operating via surface-enhanced resonance Raman scattering (SERRS). This is possible because μAg powders are very efficient substrates for both the diffuse reflectance IR and the surface-enhanced Raman scattering–SERRS spectroscopic characterization of molecular adsorbates prepared in a similar manner on silver surfaces. Besides, the agglomeration of μAg particles in a buffer solution can be prevented by the layer-by-layer deposition of cationic and anionic polyelectrolytes such as poly(allylamine hydrochloride) (PAH) and poly(acrylic acid) (PAA). In this particular study, we used rhodamine B isothiocyanate (RhBITC) as a SERRS marker molecule, and μAg powders adsorbed consecutively with RhBITC and PAH–PAA bilayers were finally derivatized with biotinylated poly(l-lysine). On the basis of the nature of the SERRS peaks of RhBITC, those μAg powders were confirmed to selectively recognize streptavidin molecules down to concentrations of 10−10 g mL−1. Since a number of different molecules can be used as SERS–SERRS marker molecules, the present method proves to be an invaluable tool for multiplex biomolecular sensing/recognition via SERS and SERRS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chang RK, Furtak TE (1982) Surface enhanced Raman scattering. Plenum, New York

    Google Scholar 

  2. Moskovits M (1985) Rev Mod Phys 57:783–826

    Article  CAS  Google Scholar 

  3. Fleischmann M, Hendra PJ, McQuillan AJ (1973) J Chem Soc Chem Commun:80–81

  4. Fleischmann M, Hendra PJ, McQuillan AJ (1974) Chem Phys Lett 26:163–166

    Article  CAS  Google Scholar 

  5. Jeanmaire DL, Van Duyne RP (1977) J. Electroanal Chem 84:1–20

    Article  CAS  Google Scholar 

  6. Albrecht MG, Creighton JA (1977) J Am Chem Soc 99:5215–5217

    Article  CAS  Google Scholar 

  7. Nie S, Emroy SR (1997) Science 275:1102–1106

    Article  CAS  Google Scholar 

  8. Kneipp K, Wang Y, Kneipp H, Perelman LT, Itzkan I, Dasari RR, Feld MS (1997) Chem Phys Lett 78:1667–1670

    CAS  Google Scholar 

  9. Futamata M, Maruyama Y, Ishikawa M (2002) Vib Spectrosc 30:17–23

    Article  CAS  Google Scholar 

  10. Jiang J, Bosnick K, Maillard M, Brus L (2003) J Phys Chem B 107:9964–9972

    Article  CAS  Google Scholar 

  11. Markel VA, Shalaev VM, Zhang P, Huynh W, Tay L, Haslett TL, Moskovits M (1999) Phys Rev B 59:10903–10909

    Article  CAS  Google Scholar 

  12. Bozhelvolnyi SI, Markel VA, Coello V, Kim W, Shalaev VM (1998) Phys Rev B 58:11441–11448

    Article  Google Scholar 

  13. Michaels AM, Jiang J, Brus L (2000) J Phys Chem B 104:11965–11971

    Article  CAS  Google Scholar 

  14. Xu H, Bjerneld EJ, Käll M, Börjesson L (1999) Phys Rev Lett 83:4357–4360

    Article  CAS  Google Scholar 

  15. Lecomte S, Matejka P, Baron MH (1998) Langmuir 14:4373–4377

    Article  CAS  Google Scholar 

  16. Campion A, Ivanecky JE, Child CM, Foster M (1995) J Am Chem Soc 117:11807–11808

    Article  CAS  Google Scholar 

  17. Doering WE, Nie S (2002) J Phys Chem B 106:311–317

    Article  CAS  Google Scholar 

  18. Ni J, Lipert RJ, Dawson GB, Porter MD (1999) Anal Chem 71:4903–4908

    Article  CAS  Google Scholar 

  19. Cao P, Gu R, Tian ZQ (2002) Langmuir 18:7609–7615

    Article  CAS  Google Scholar 

  20. Chu W, LeBlanc RJ, Williams CT, Kubota J, Zaera F (2003) J Phys Chem B 107:14365–14373

    Article  CAS  Google Scholar 

  21. Tian ZQ, Ren B, Wu DT (2002) J Phys Chem B 106:9463–9483

    Article  CAS  Google Scholar 

  22. Kim NH, Lee SJ, Kim K (2003) Chem Commun 724–725

  23. Cao YC, Jin R, Mirkin CA (2002) Science 297:1536–1540

    Article  CAS  Google Scholar 

  24. Grubisha DS, Lipert RJ, Park HY, Driskell J, Porter MD (2003) Anal Chem 75:5936–5943

    Article  CAS  Google Scholar 

  25. Kneipp J, Kneipp H, Rice WL, Kneipp K (2005) Anal Chem 77:2381–2385

    Article  CAS  Google Scholar 

  26. Haynes CL, Yonzon CR, Zhang X, Van Duyne RP (2005) J Raman Spectrosc 36:471–484

    Article  CAS  Google Scholar 

  27. Premasiri WR, Moir DT, Klempner MS, Krieger N, Jines G II, Ziegler LD (2005) J Phys Chem B 109:312–320

    Article  CAS  Google Scholar 

  28. Schlücker S, Küstner B, Punge A, Bonfig R, Marx A, Ströbel P (2006) J Raman Spectrosc 37:719–721

    Article  Google Scholar 

  29. Mulvaney SP, Musick MD, Keating CD, Natan MJ (2003) Langmuir 19:4784–4790

    Article  CAS  Google Scholar 

  30. Su X, Zhang J, Sun L, Koo TW, Chan S, Sundararajan N, Yamakawa M, Berlin AA (2005) Nano Lett 5:49–54

    Article  CAS  Google Scholar 

  31. McCabe AF, Eliasson C, Prasath RA, Hernandez-Santana A, Stevenson L, Apple I, Cormack PAG, Graham D, Smith WE, Corish P, Lipscomb SJ, Holland ER, Prince PD (2006) Faraday Discuss 132:303–308

    Article  CAS  Google Scholar 

  32. Cui Y, Ren B, Yao JL, Gu RA, Tian ZQ (2006) J Phys Chem B 110:4002–4006

    Article  CAS  Google Scholar 

  33. Han HS, Kim CH, Kim K (1998) Appl Spectrosc 52:1047–1052

    Article  CAS  Google Scholar 

  34. Han SW, Han HS, Kim K (1999) Vib Spectrosc 21:133–142

    Article  CAS  Google Scholar 

  35. Han HS, Han SW, Joo SW, Kim K (1999) Langmuir 15:6868–6874

    Article  CAS  Google Scholar 

  36. Kim K, Park HK, Kim NH (2006) Langmuir 22:3421–3427

    Article  CAS  Google Scholar 

  37. Kim K, Kim NH, Park HK (2007) Biosens Bioelectron 22:1000–1005

    Article  CAS  Google Scholar 

  38. Huang NP, Vörös J, De Paul SM, Textor M, Spensor ND (2002) Langmuir 18:220–230

    Article  CAS  Google Scholar 

  39. Kenausis GL, Vörös J, Elbert DL, Huang NP, Hofer R, Ruiz L, Textor M, Hubbell JA, Spensor ND (2000) J Phys Chem B 104:3298–3309

    Article  CAS  Google Scholar 

  40. Huang NP, Michel J, Vörös J, Textor M, Hofer R, Rossi A, Elbert DL, Hubbell JA, Spensor ND (2001) Langmuir 17:489–498

    Article  CAS  Google Scholar 

  41. Heuberger R, Sukhorukov G, Vörös J, Textor M, Möhwald H (2005) Adv Funct Mater 15:357–366

    Article  CAS  Google Scholar 

  42. Choi J, Rubner MF (2005) Macromolecules 38:116–124

    Article  CAS  Google Scholar 

  43. Wang Y, Yu A, Caruso F (2005) Angew Chem Int Ed Engl 44:2888–2892

    Article  CAS  Google Scholar 

  44. Cass T, Ligler FS (1998) Immobilized biomolecules in analysis: a practical approach. Oxford University Press, New York

    Google Scholar 

  45. Socrates G (1994) Infrared characteristic group frequencies: tables and charts. Wiley, Chichester

    Google Scholar 

Download references

Acknowledgement

This work was supported by the Korea Science and Engineering Foundation (grant no. R01-2006-000-10017-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwan Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, K., Lee, H.S. & Kim, N.H. Silver-particle-based surface-enhanced resonance Raman scattering spectroscopy for biomolecular sensing and recognition. Anal Bioanal Chem 388, 81–88 (2007). https://doi.org/10.1007/s00216-007-1182-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-007-1182-6

Keywords

Navigation