Skip to main content
Log in

Laser-Power Dependence of Poly-Silicon Crystallization Using 355-nm Nanosecond Laser Annealing

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

We report the laser-power dependence of a poly-silicon thin film fabricated using a 355-nm nanosecond laser annealing. The temperature distribution in the annealed thin film was investigated using thermal simulations as the laser power was varied to obtain the optimum laser conditions for crystalizing an amorphous silicon film. Based on the simulation results, laser annealing experiments were conducted for a 100-nm-thick amorphous silicon film deposited on a SiO2/Si wafer by using a Q-switched 355-nm nanosecond diode-pumped solid-state laser. The characteristics of the annealed silicon film were investigated using Raman spectroscopy and atomic force microscopy, which showed that both the crystal quality and the roughness of the annealed film increased as the laser was power increased. The experimentally obtained optimum laser power condition was found to be consistent with the simulation results. The demonstrated 355-nm nanosecond laser annealing is expected to provide a versatile solution for low-temperature poly-silicon processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Matsuo, A. Heya and H. Hamada, ECS J. Solid State Sci. Technol. 8, 239 (2019).

    Article  Google Scholar 

  2. M. Stewart, R. S. Howell, L. Pires and M. K. Hatalis, IEEE Trans. Electron Devices 48, 845 (2001).

    Article  ADS  Google Scholar 

  3. K. C. Phillips, H. H. Gandhi, E. Mazur and S. K. Sundaram, Adv. Opt. Photonics 7, 684 (2015).

    Article  ADS  Google Scholar 

  4. M. J. Kang et al., J. Soc. Inf. Disp. 27, 34 (2019).

    Article  Google Scholar 

  5. Y. H. Jung et al., Thin Solid Films 681, 93 (2019).

    Article  ADS  Google Scholar 

  6. I. Theodorakos et al., J. Appl. Phys. 115, 043108 (2014).

    Article  ADS  Google Scholar 

  7. K. Huet et al., Mater. Sci. Semicond. Process. 62, 92 (2017).

    Article  Google Scholar 

  8. C. Fenouillet-Beranger et al., 2014 IEEE International Electron Devices Meeting (San Francisco, CA, 2014), p. 27.5.

    Google Scholar 

  9. K. Huet et al., Appl. Surf. Sci. 505, 144470 (2020).

    Article  Google Scholar 

  10. T. Sameshima and S. Usui, J. Appl. Phys. 70, 1281 (1991).

    Article  ADS  Google Scholar 

  11. R. Delmdahl and R. Patzel, J. Phys. D: Appl. Phys. 47, 034004 (2014).

    Article  ADS  Google Scholar 

  12. D. H. Choi, H. S. Kim, S. Y. Oh and C. H. Lee, Curr. Appl. Phys. 16, 876 (2016).

    Article  ADS  Google Scholar 

  13. K. Jang, Y. Kim, J. Park and J. Yi, Materials 12, 1739 (2019).

    Article  ADS  Google Scholar 

  14. C. H. Chou et al., Appl. Phys. Lett. 103, 053515 (2013).

    Article  ADS  Google Scholar 

  15. C. Wen et al., Mater. Res. Bull. 93, 238 (2017).

    Article  Google Scholar 

  16. W. Beyer et al., J. Appl. Phys. 124, 153103 (2018).

    Article  ADS  Google Scholar 

  17. T. Noguchi et al., Jpn. J. Appl. Phys. 49, 03CA10 (2010).

    Google Scholar 

  18. S. Jin et al., IEEE Electron Device Lett. 37, 291 (2016).

    Article  ADS  Google Scholar 

  19. Y. Choi and H. Y. Ryu, J. Korean Phys. Soc. 72, 939 (2018).

    Article  ADS  Google Scholar 

  20. Y. H. Jung et al., Thin Sold Films 681, 93 (2019).

    Article  ADS  Google Scholar 

  21. I. A. Palani, N. J. Vasa and M. Singaperumal, Mater. Sci. Semicond. Process. 11, 107 (2008).

    Article  Google Scholar 

  22. F. Meyer et al., Appl. Phys. A 124, 254 (2018).

    Article  ADS  Google Scholar 

  23. I. Theodorakos et al., J. Appl. Phys. 115, 043108 (2014).

    Article  ADS  Google Scholar 

  24. M. Caninenberg et al., Opt. Laser Technol. 74, 132 (2015).

    Article  ADS  Google Scholar 

  25. E. P. Donovan, F. Spaepen and D. Turnbull, Appl. Phys. Let. 42, 698 (1983).

    Article  ADS  Google Scholar 

  26. Y. Liao, J. Y. Degorce and M. Meunier, Appl. Phys. A 82, 679 (2006).

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by Nano Material Technology Development Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (NRF- 2015M3A7B7045470), the Industrial Strategic Technology Developments Program (10052804) Funded by the Ministry of Knowledge Economy, Korea Evaluation Institute of Industrial Technology (MKE/KEIT), and Korea Institute for Advancement of Technology (KIAT) grant funded by the Korea Government (MOTIE) (P0008458, PBL Oriented Semiconductor Equipment Engineer Recruits (POSEER), 2020 The Competency Development Program for Industry Specialist).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han-Youl Ryu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pyo, J., Ryu, H.Y., Park, J. et al. Laser-Power Dependence of Poly-Silicon Crystallization Using 355-nm Nanosecond Laser Annealing. J. Korean Phys. Soc. 76, 1116–1120 (2020). https://doi.org/10.3938/jkps.76.1116

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.76.1116

Keywords

Navigation