Skip to main content
Log in

Review on the Use of Light Unmanned Aerial Vehicles in Geological and Geophysical Research

  • Published:
Seismic Instruments Aims and scope Submit manuscript

Abstract

The possibility of using a universal unmanned aerial platform for a wide range of geological and geophysical research is discussed. Various types of lightweight unmanned aircraft and related equipment are considered. The case of using copters for geological field research is considered. Recommendations for selecting unmanned aerial vehicles (UAVs) and avionics are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Adams, S.M., Levitan, M.L., and Friedland, C.J., High Resolution Imagery Collection Utilizing Unmanned Aerial Vehicles (UAVs) for Post-Disaster Studies, Adv. Hurricane Eng., 2013, pp. 777–793. https://doi.org/10.1061/9780784412626.067

    Book  Google Scholar 

  2. AERONET Association, A Project of Classification of Unmanned Aerial Systems, approved by the Russian Air Transport Agency in 2018. https://aeronet.aero/news/091728. Accessed July 1, 2020.

  3. Batotsyrenov, E.A. and Beshentsev, A.N., The use of UAV in geographic studies, in Materialy Vserossiiskoi nauchno-prakticheskoi konferentsii (Proceedings of the All-Russian Science-and-Practice Conference), Irkutsk, Russia, 2018, pp. 20–23.

  4. Beagle Commumity, BeagleBone Black development platform. https://beagleboard.org/black. Accessed July 1, 2020.

  5. Bemis, S., Micklethwaite, S., Turner, D., James, M.R., Akciz, S., Thiele, S., and Bangash, H.A., Ground-based and UAV-based photogrammetry: A multi-scale, high resolution mapping tool for structural geology and paleoseismology, J. Struct. Geol., 2014, vol. 69, pp. 163–178.

    Article  Google Scholar 

  6. Bespilotnye letatel’nye apparaty (Unmanned aerial vehicles), descriptions and specifications. https://bp-la.ru/. Accessed July 1, 2020.

  7. Booysen, R., Zimmermann, R., Lorenz, S., Gloaguen, R., Andreani, L., and Nex, P.A.M., A multi-scale remote sensing approach for mineral exploration: An example from the Lofdal carbonatite-hosted REE deposit, Namibia, Geophys. Res. Abstr., 2019, vol. 21, p. EGU2019–14228.

    Google Scholar 

  8. Cherkasov, S.V., Sterligov, B.V., and Zolotaya, L.A., On the use of unmanned aerial vehicles for high-precision measurements of the Earth’s magnetic field, Moscow Univ. Geol. Bull., 2016, vol. 71, no. 3, pp. 296–299. https://doi.org/10.3103/S0145875216040037

    Article  Google Scholar 

  9. Cunningham, M., Aeromagnetic surveying with unmanned aircraft systems, MS Thesis, Carleton Univ., Ottawa, 2016.

  10. Cunningham, M., Samson, C., Wood, A., and Cook, I., Aeromagnetic surveying with a rotary-wing unmanned aircraft system: A case study from a zinc deposit in Nash Creek, New Brunswick, Canada, Pure Appl. Geophys., 2018, vol. 175, pp. 3145–3158. https://doi.org/10.1007/s00024-017-1736-2

    Article  Google Scholar 

  11. Donohue, V., Identification of UAV platforms and payloads for mineral exploration and applications in the oil and gas industry, Int. J. Unmanned Syst. Eng., 2014, vol. 2, no. 3, pp. 61–69. https://doi.org/10.14323/ijuseng.2014.12

    Article  Google Scholar 

  12. Fetisov, V.S., Neugodnikova, L.M., Adamovskii, V.V., and Krasnoperov, R.A., Bespilotnaya aviatsiya. Terminologiya, klassifikatsiya, sovremennoe sostoyanie (Unmanned Aviation: Terminology, Classification, and State-of-the-Art), Fetisov, V.S., Ed., Ufa: FOTON, 2014.

    Google Scholar 

  13. Fiolleau, S., Borgniet, L., Jongmans, D., Bievre, G., and Chambon, G., Using UAV’s imagery and LiDAR to accurately monitor Harmaliere (France) landslide evolution, Geophys. Res. Abstr., 2019, vol. 21, Art. No. EGU2019–10275.

    Google Scholar 

  14. Firsov, A.P., Zlygostev, I.N., Dyad’kov, P.G., Savluk, A.V., Vaisman, P.A., Val’d, A.K., Sheremet, A.S., and Evmenov, N.D., Application of high-frequency magnetometer for light-weight UAVs in geological-geophysical surveys of diatremes, Interekspo Geo-Sibir’, 2015a, vol. 2, no. 2, pp. 299–304.

    Google Scholar 

  15. Firsov, A.P., Zlygostev, I.N., Savluk, A.V., Vaisman, P.A., Val’d A.K., Dyad’kov P.G., Kolesov, A.S., and Sheremet, A.S., Application of unmanned aerial vehicles in geological-geophysical mapping, in Materialy V Vserossiiskoi nauchno-prakticheskoi konferentsii “Geologiya i mineral’no-syr’evye resursy severo-vostoka Rossii” (Proceedings of the V All-Russian Science-and-Practice Conference “Geology and Mineral Resources of the Russian Northeast”), Novosibirsk, Russia, 2015b, pp. 529–533. Geological Survey of Denmark and Greenland, MULSE-DRO – Multi-Sensor Drones. https://www. isaaffik.org/mulsedro-multi-sensor-drones. Accessed July 1, 2020.

  16. Hong, Z., Tong, X., Cao, W., Jiang, S., Chen, P., and Liu, S., Rapid three-dimensional detection approach for building damage due to earthquakes by the use of parallel processing of unmanned aerial vehicle imagery, J. Appl. Remote Sens., 2015, vol. 9, no. 1. https://doi.org/10.1117/1.JRS.9.097292

  17. Johnson, K., Nissen, E., Saripalli, S., Arrowsmith, J.R., McGarey, P., Scharer, K., Williams, P., and Blisniuk, K., Rapid mapping of ultrafine fault zone topography with structure from motion, Geosphere, 2014, vol. 10, no. 5, pp. 969–986.

    Article  Google Scholar 

  18. Kamilaris, A. and Prenafeta-Boldú, F.X., Disaster monitoring using unmanned aerial vehicles and deep learning, last revised August 8, 2018. arXiv:1807.11805.2018. Accessed July 1, 2020.

  19. Kiyavash, P., Development and evaluation of unmanned aerial vehicle (UAV) magnetometry systems, MS Thesis, Queen’s Univ., Kingston, Ont., 2016.

  20. Koyama, T., Kaneko, T., Ohminato, T., Yanagisawa, T., Watanabe, A., and Takeo, M., An aeromagnetic survey of Shinmoe-dake volcano, Kirishima, Japan, after the 2011 eruption using an unmanned autonomous helicopter, Earth, Planets Space, 2013, vol. 65, no. 6, p. 16.

    Article  Google Scholar 

  21. Li, C., Zhang, G., Lei, T., and Gong A., Quick image-processing method of UAV without control points data in earthquake disaster area, Trans. Nonferrous Met. Soc. China, 2011, vol. 21, pp. 523–528. https://doi.org/10.1016/S1003-6326(12)61635-5

    Article  Google Scholar 

  22. Lin, J., Tao, H., Wang, Y., and Huang, Z., Practical application of unmanned aerial vehicles for mountain hazards survey, 18th International Conference on Geoinformatics, Beijing, China, 2010. https://doi.org/10.1109/GEOINFORMATICS.2010.5567777

  23. Madriz, Y., Jackisch, R., Zimmermann, R., and Gloaguen, R., UAS aeromagnetic survey for mineral exploration using a fluxgate triaxial magnetometer, Geophys. Res. Abstr., 2019, vol. 21, Art. No. EGU2019-14812.

    Google Scholar 

  24. Martin, P.G., Payton, O.D., Fardoulis, J.S., Richards, D.A., and Scott, T.B., The use of unmanned aerial systems for the mapping of legacy uranium mines, J. Environ. Radioact., 2015, vol. 143, pp. 135–140. https://doi.org/10.1016/j.jenvrad.2015.02.004

    Article  Google Scholar 

  25. Merlaud, A., Tack, F., Constantin, D., Fayt, C., Maes, J., Mingireanu, F., Mocanu, I., Georgescu, L., and Van Roozendael, M., Small Whiskbroom Imager for atmospheric compositioN monitorinG (SWING) from an Unmanned Aerial Vehicle (UAV): Results from the 2014 AROMAT campaign, Geophys. Res. Abstr., 2015, vol. 17, art. no. EGU2015-12499.

  26. Pajares, G., Overview and current status of remote sensing applications based on Unmanned Aerial Vehicles (UAVs), Photogramm. Eng. Remote Sens., 2015, vol. 81, no. 4, pp. 281–330. https://doi.org/10.14358/PERS.81.4.281

    Article  Google Scholar 

  27. Parvar, K., Braun, A., Layton-Matthews, D., and Burns, M., UAV magnetometry for chromite exploration in the Samail ophiolite sequence, Oman, J. Unmanned Veh. Syst., 2018, vol. 6, no. 1, pp. 57–69. https://doi.org/10.1139/juvs-2017-0015

    Article  Google Scholar 

  28. Raspberry Pi 4 model B. https://www.raspberrypi.org/ products/raspberry-pi-4-model-b/. Accessed July 1, 2020.

  29. Raspberry Pi Zero. https://www.raspberrypi.org/products/raspberry-pi-zero/. Accessed July 1, 2020.

  30. Rathinam, S., Kim, Z., Soghikian, A., and Sengupta, R., Vision based following of locally linear structures using an unmanned aerial vehicle, Proceedings of the 44th IEEE Conference on Decision and Control, Seville, Spain, 2005, pp. 6085–6090. https://doi.org/10.1109/CDC.2005.1583135

  31. DJI Company, Phantom 4 Advanced. https://www.dji.com/ru/phantom-4-adv. Accessed July 1, 2020.

  32. Reitman, N.G., Bennett, S.E., Gold, R.D., Briggs, R.W., and DuRoss, C.B., High resolution trench photomosaics from image based modeling: Workflow and error analysis, Bull. Seismol. Soc. Am., 2015, vol. 105, pp. 2354–2366.

    Article  Google Scholar 

  33. Schneiderwind, S., Kázmér, M., Boulton, S., Papanikolaou, I., Stewart, I., and Reicherter, K., The geometry of tidal notches – What do they reveal about coastal tectonics?, 7th International INQUA Meeting on Paleoseismology, Active Tectonics and Archeoseismology, 2016, Crestone, Colo., United States.

  34. Sevieri, G., Di Stasio, S., O’Sullivan, K., and Galasso, C., The CHeRiSH project: Towards a multilevel, multi-hazard risk assessment framework for cultural heritage assets in the Philippines, Atti del XVIII Convegno ANIDIS L’ingegneria Sismica in Italia, Ascoli Piceno, Italy, 2019, pp. 119–130.

    Google Scholar 

  35. Sterligov, B. and Cherkasov, S., Reducing magnetic noise of an unmanned aerial vehicle for high-quality magnetic surveys, Int. J. Geophys., 2016, vol. 2016. https://doi.org/10.1155/2016/4098275

  36. Sutinen, R., Hyvönen, E., Middleton, M., and Ruskeeniemi, T., Airborne LiDAR detection of postglacial faults and Puljumoraine Palojarvi, Finnish Lapland, Global Pla-net. Change, 2014, vol. 115, pp. 24–32.

    Article  Google Scholar 

  37. Springer Handbook of Global Navigation Satellite Systems, Teunissen, P.J.G. and Montenbruck, O., Eds., Springer, 2017.

    Google Scholar 

  38. The Rules of Registration of Civil Unmanned Air Vehicles of Maximum Take-Off Weight from 0.25 to 30 kg, Imported to or Manufactured in the Russian Federation, Approved by the Decree of the Russian Government no. 658 of May 25, 2019.

  39. Tsirel, V., Parshin, A., Ancev, V., and Kapshtan, D., Unmanned airborne magnetic survey technologies: Present and future, in Recent Advances in Rock Magnetism, Environmental Magnetism and Paleomagnetism, Springer, 2019, pp. 523–534. https://doi.org/10.1007/978-3-319-90437-5_36

    Book  Google Scholar 

  40. Tuck, L., Samson, C., Polowick, C., and Laliberte, J., Real-time compensation of magnetic data acquired by a single-rotor unmanned aircraft system, Geophys. Prospect., 2019, vol. 67, no. 6, pp. 1637–1651. https://doi.org/10.1111/1365-2478.12800

    Article  Google Scholar 

  41. Turner, D., Lucieer, A., and Watson, C., An automated technique for generating georectified mosaics from ultra-high resolution Unmanned Aerial Vehicle (UAV) imagery, based on Structure from Motion (SfM) point clouds, Remote Sens., 2012, vol. 4, no. 5, pp. 1392–1410. https://doi.org/10.3390/rs4051392

    Article  Google Scholar 

  42. Villa, T.F., Gonzalez, F., Miljievic, B., Ristovski, Z.D., and Morawska, L., An overview of small unmanned aerial vehicles for air quality measurements: Present applications and future prospectives, Sensors, 2016, vol. 16, no. 7, p. 1072. https://doi.org/10.3390/s16071072

    Article  Google Scholar 

  43. Watts, A.C., Ambrosia, V.G., and Hinkley, E.A., Unmanned aircraft systems in remote sensing and scientific research: Classification and considerations of use, Remote Sens., 2012, vol. 4, no. 6, pp. 1671–1692.

    Article  Google Scholar 

  44. Wechsler, N., Katz, O., and Mushkin, A., On the accuracy of topographic models derived from UAV photography, 7th International INQUA Meeting on Paleoseismology, Active Tectonics and Archeoseismology, 2016, Crestone, Colo., United States.

  45. Westoby, M.J., Brasington, J., Glasser, N.F., Hambrey, M.J., and Reynolds, J.M., “Structure-from-Motion” photogrammetry: A low-cost, effective tool for geoscience applications, Geomorphology, 2012, vol. 179, pp. 300–314.

    Article  Google Scholar 

Download references

Funding

This study was carried out as part of a state assignment, registration number AAAA-A19-119110500109-0, for the Institute of Physics of the Earth, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. D. Ivanov.

Additional information

Translated by M. Hannibal

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aleshin, I.M., Ivanov, S.D., Koryagin, V.N. et al. Review on the Use of Light Unmanned Aerial Vehicles in Geological and Geophysical Research. Seism. Instr. 56, 509–515 (2020). https://doi.org/10.3103/S0747923920050035

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0747923920050035

Keywords:

Navigation