Skip to main content
Log in

Full Structure Modeling of Three-Domains Monooxygenase CYP102A1 ВМ3 from Bacillus megaterium

  • Published:
Moscow University Chemistry Bulletin Aims and scope

Abstract

The 3D full-atom model of the whole-size CYP102A1 from Bacillus megaterium (cytochrome P450 BM3) has been constructed using molecular modeling methods. The structure model was constructed using crystal structures of the separate FAD-binding domain (PDB ID: 4DQK) and the complex of FMN-binding and monooxygenase domains (PDB ID: 1BVY). Modeling procedure included analysis of the domains’ surfaces to find the orientation with maximum inter-subunit contacts. The overall configuration of the obtained complex was optimized using molecular dynamics. The final full-atom structure model shows rather tight interactions between FAD- and FMN-binding domains due to 10 inter-domain hydrogen bonds and hydrophobic interactions between three pairs of amino acid residues. This 3D model can be used for structure-function studies and rational design of the enzyme as well as for construction of hybrid supramolecular structures of biocatalysts with cytochrome P450 BM3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Neeli, R. Girvan, H.M., Lawrence, A., Warren, M.J., Leys, D., Scrutton, N.S., and Munro, A.W., FEBS Lett., 2005, vol. 579, p. 5582.

  2. Girvan, H.M. and Munro, A.W., Curr. Opin. Chem. Biol., 2016, vol. 31, p. 136.

  3. Joyce, M.G., Ekanem, I.S., Roitel, O., Dunford, A.J., Neeli, R., Girvan, H.M., Baker, G.J., Curtis, R.A., Munro A.W., and Leys, D., FEBS J., 2012, vol. 279, p. 1694.

  4. Sevrioukova, I.F., Li, H., Zhang, H., Peterson, J.A., and Poulos, T.L., Proc. Natl. Acad. Sci. U. S. A., 1999, vol. 96, p. 1863.

  5. Bridges, A., Gruenke, L., Chang, Y. T., Vakser, I. A., Loew, G., and Waskell, L., J. Biol. Chem., 1998, vol. 273, p. 17036.

  6. Shimizu, T., Tateishi, T., and Fujii-Kuriyama, H.M., J. Biol. Chem., 1991, vol. 266, p. 3372.

  7. Stayton P.S., and Sligar, S. G., Biochemistry, 1991, vol. 30, p. 7381.

  8. Wada, A., and Waterman, M.R., J. Biol. Chem., 1992, vol. 267, p. 22877.

  9. Roccatano, D., J. Phys.: Condens. Matter, 2015, vol. 27, 273102.

  10. Guengerich, F.P., Michael, R., Waterman, M.R., and Egli, M., Trends Pharmacol. Sci., 2016, vol. 37, p. 625.

  11. Ludwig, M.L., Pattridge, K.A., Metzger, A.L., Di-xon, M.M., Eren, M., Feng, Y., and Swenson, R.P., Biochemistry, 1997, vol. 36, p. 1259.

  12. Nelson, M.T., Humphrey, W.F. Gursoy, A., Dalke, A., Kalé, L.V., Skeel, R.D., and Schulten, K., Int. J. Supercomput. Appl. High Perform. Comput., 1996, vol. 10, no. 4, p. 251.

  13. Humphrey, W., Dalke, and A., Schulten, K., J. Mol. Graphics Modell., 1996, vol. 14, p. 33.

  14. Brooks B.R., Bruccoleri R.E., Olafson B.D., States D.J., Swaminathan S., Karplus M., J. Comput. Chem., 1983, vol. 4, no. 2, p. 187.

  15. MacKerell, A.D., Jr., Bashford, D., Bellott, M., Dunbrack, R.L., Jr., Evanseck, J.D., Field, M.J., Fischer, S., Gao, J., Guo, H., Ha, S., McCarthy, J.D., Kuchnir, L., Kuczera, K., Lau, F.T.K., Mattos, C., Michnick, S., Ngo, T., Nguyen, D.T., Prodhom, B., Reiher, W.E., Roux, B., Schlenkrich, M., Smith, J.C., Stote, R., Straub, J., Watanabe, M., Wiórkiewicz-Kuczera, J., Yin, D., and Karplus, M., J. Phys. Chem., 1998, vol. 102, p. 3586.

  16. Vanommeslaeghe, K., Hatcher, E., and Acharya, C., J. Comput. Chem., 2010, vol. 31, p. 671.

  17. Tishkov, V.I., and Khoronenkova, S.V., Biochemistry (Moscow), 2005, vol. 70, no. 1, p. 40.https://doi.org/10.1007/s10541-005-0050-2

  18. Tishkov, V.I., Khoronenkova, S.V., Cherskova, N.V., Savin, S.S., Uporov, I.V., Moscow Univ. Chem. Bull. (Engl. Transl.), 2010, vol. 65, no. 3, p. 121.https://doi.org/10.3103/S0027131410030028

  19. Cherskova, N.V., Khoronenkova, S.V., and Tishkov, V.I., Russ. Chem. Bull., 2010, vol. 59, no. 1, p. 269.https://doi.org/10.1007/s11172-010-0072-9

  20. Voevodin, Vl., Antonov, A., Nikitenko, D., Shvets, P., Sobolev, S., Sidorov, I., Stefanov, K., Voevodin, Vad., and Zhumatiy S., Supercomput. Front. Innovations, 2019, vol. 6, no. 2, p. 4.

Download references

ACKNOWLEDGMENTS

This work was performed using the equipment of the shared research facilities of HPC computing resources at the Moscow State University [20].

Funding

This work was partially supported by the Russian Science Foundation (project no. 18-74-00146).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. A. Pometun or V. I. Tishkov.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

Supplementary material

There are no additional materials.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krivitskaya, A.V., Pometun, A.A., Parshin, P.D. et al. Full Structure Modeling of Three-Domains Monooxygenase CYP102A1 ВМ3 from Bacillus megaterium. Moscow Univ. Chem. Bull. 75, 162–166 (2020). https://doi.org/10.3103/S0027131420030074

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0027131420030074

Keywords:

Navigation