Skip to main content
Log in

Purification and characterization of a novel antifungal protein from Bacillus subtilis strain B29

  • Published:
Journal of Zhejiang University SCIENCE B Aims and scope Submit manuscript

Abstract

An antifungal protein was isolated from a culture of Bacillus subtilis strain B29. The isolation procedure comprised ion exchange chromatography on diethylaminoethyl (DEAE)-52 cellulose and gel filtration chromatography on Bio-Gel® P-100. The protein was absorbed on DEAE-cellulose and Bio-Gel® P-100. The purified antifungal fraction was designated as B29I, with a molecular mass of 42.3 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), pI value 5.69 by isoelectric focusing (IEF)-PAGE, and 97.81% purity by high performance liquid chromatography (HPLC). B29I exhibited inhibitory activity on mycelial growth in Fusarium oxysporum, Rhizoctonia solani, Fusarium moniliforme, and Sclerotinia sclerotiorum. The 50% inhibitory concentrations (IC50) of its antifungal activity toward Fusarium oxysporum and Rhizoctonia solani were 45 and 112 μmol/L, respectively. B29I also demonstrated an inhibitory effect on conidial spore germination of Fusarium oxysporum and suppression of germ-tube elongation, and induced distortion, tumescence, and rupture of a portion of the germinated spores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Asaka, O., Shoda, M., 1996. Biocontrol of Rhizoctonia solani damping-off of tomato with Bacillus subtilis RB14. Appl. Environ. Microbiol., 62(11):4081–4085.

    PubMed  CAS  Google Scholar 

  • Benhamou, N., Broglie, K., Broglie, R., Chet, I., 1993. Antifungal effect of bean endochitinase on Rhizoctonia solani: ultrastructural changes and cytochemical aspect of chitin breakdown. Can. J. Microbiol., 39(3):318–328.

    Article  PubMed  CAS  Google Scholar 

  • Bradford, M.M., 1976. A rapid and sensitive method for the quantification of milligram quantities of protein utilizing the principle of protein dye binding. Anal. Biochem., 72(1–2):248–254. [doi:10.1016/0003-2697(76)90527-3]

    Article  PubMed  CAS  Google Scholar 

  • Broekaert, W.F., van Parijs, J., Leyns, F., Joos, H., Peumans, W.J., 1989. A chitin-binding lectin from stinging nettle rhizomes with antifungal properties. Science, 245(4922): 1100–1102. [doi:10.1126/science.245.4922.1100]

    Article  PubMed  CAS  Google Scholar 

  • Carrillo, C., Teruel, J.A., Aranda, F.J., Ortiz, A., 2003. Molecular mechanism of membrane permeabilization by the peptide antibiotic surfactin. Biochim. Biophys. Acta, 1611(1–2):91–97. [doi:10.1016/S0005-2736(03)00029-4]

    PubMed  CAS  Google Scholar 

  • Delcambe, L., Peypoux, F., Besson, F., Guinand, M., Michel, G., 1977. Structure of iturin and iturin-like substance. Biochem. Society Transac., 5(4):1122–1124.

    CAS  Google Scholar 

  • Hwang, S.F., Chakravarty, P., 1992. Potential for the integrated control of Rhizoctonia root-rot of Pisum sativum using Bacillus subtilis and a fungicide. Z. PflKrankh. PflSchutz., 99:626–636.

    Google Scholar 

  • Iijima, R., Kurata, S., Natori, S., 1993. Purification, characterization and cDNA cloning of an antifungal protein from the hemolymph of Sarcophaga peregrine (flesh fly). J. Biol. Chem., 268(16):12055–12062.

    PubMed  CAS  Google Scholar 

  • Joshi, B.N., Sainani, M.N., Bastawade, K.B., Gupta, V.S., Ranjekar, P.K., 1998. Cysteine protease inhibitor from pearl millet: a new class of antifungal protein. Biochem. Biophys. Res. Commun., 246(2):382–387. [doi:10.1006/bbrc.1998.8625]

    Article  PubMed  CAS  Google Scholar 

  • Kim, P.I., Chung, K.C., 2004. Production of an antifungal protein for control of Colletotrichum lagenarium by Bacillus amyloliquefaciens MET0908. FEMS. Microbiol. Lett., 234(1):177–183. [doi:10.1016/j.femsle.2004.03.032]

    Article  PubMed  CAS  Google Scholar 

  • Laemmli, U.K., Favre, M., 1973. Maturation of the head of bacteriophage T4. I. DNA packaging events. J. Mol. Biol., 80(4):575–599. [doi:10.1016/0022-2836(73)90198-8]

    Article  PubMed  CAS  Google Scholar 

  • Lam, S.K., Ng, T.B., 2001a. First simultaneous isolation of a ribosome inactivating protein and an antifungal protein from a mushroom (Lyophyllum shimeji) together with evidence for synergism of their antifungal effects. Arch. Biochem. Biophys., 393(2):271–280. [doi:10.1006/abbi.2001.2506]

    Article  PubMed  CAS  Google Scholar 

  • Lam, S.K., Ng, T.B., 2001b. Isolation of a novel thermolabile heterodimeric ribonuclease with antifungal and antiproliferative activities from roots of the sanchi ginseng Panax notoginseng. Biochem. Biophys. Res. Commun., 285(2):419–423. [doi:10.1006/bbrc.2001.5193]

    Article  PubMed  CAS  Google Scholar 

  • Lam, S.K., Ng, T.B., 2001c. Isolation of a small chitinase-like antifungal protein from Panax notoginseng (sanchi ginseng) roots. Int. J. Biochem. Cell Biol., 33(3):287–292. [doi:10.1016/S1357-2725(01)00002-4]

    Article  PubMed  CAS  Google Scholar 

  • Lam, Y.W., Wang, H.X., Ng, T.B., 2000. A robust cysteine-deficient chitinase-like antifungal protein from inner shoots of the edible chive Allium tuberosum. Biochem. Biophys. Res. Commun., 279(1):74–80. [doi:10.1006/bbrc.2000.3821]

    Article  PubMed  CAS  Google Scholar 

  • Leah, R., Tommerup, H., Svendsen, I., Mundy, J., 1991. Biochemical and molecular characterization of three barley seed proteins with antifungal properties. J. Biol. Chem., 266(3):1564–1573.

    PubMed  CAS  Google Scholar 

  • Li, J., Yang, Q., 2005. Biological Control of Fusarisum Wilt with an Antagonistic Strain of Bacillus subtilis. In: Yang, Q., Yu, Z.N. (Eds.), Study on Plant Pest and Diseases Biological Control and Bio-technology. The 3rd International Symposium on Bio-Control and Biotechnology, Heilongjiang Science Technology Press, Harbin, China, p.229–236.

    Google Scholar 

  • Li, J., Yang, Q., Zhao, L., Wang, Y., 2008. Antifungal substance from biocontrol Bacillus subtilis B29 strain. China Biotechnology, 28(2):59–65 (in Chinese).

    Google Scholar 

  • Liu, Y., Chen, Z., Ng, T.B., Zhang, J., Zhou, M., Song, F., Lu, F., Liu, Y., 2007. Bacisubin, an antifungal protein with ribonuclease and hemagglutinating activities from Bacillus subtilis strain B-916. Peptides, 28(3):553–559. [doi:10.1016/j.peptides.2006.10.009]

    Article  PubMed  CAS  Google Scholar 

  • Loeffler, W., Tschen, J.S.M., Vanittanakom, N., Kulger, M., Knorpp, E., Hsieh, T.F., Wu, T.G., 1986. Antifungal effects of bacilysin and fengycin from Bacillus subtilis F29-3. A comparison with activities of other Bacillus antibiotics. J. Phytopathol., 115(3):204–213. [doi:10.1111/j. 1439-0434.1986.tb00878.x]

    Article  CAS  Google Scholar 

  • Majumdar, S.K., Bose, S.K., 1960. Isolation and homogeneity of mycobacillin. Arch. Biochem. Biophy., 90(1):154–158. [doi:10.1016/0003-9861(60)90626-3]

    Article  CAS  Google Scholar 

  • Molina, A., Segura, A., Garia-Olmedo, F., 1993. Lipid transfer proteins (nsLTPS) from barley and maize leaves are potent inhibitors of bacterial and fungal plant pathogens. FEBS Lett., 316(2):119–122. [doi:10.1016/0014-5793(93)81198-9]

    Article  PubMed  CAS  Google Scholar 

  • Moyne, A.L., Cleveland, T.E., Tuzun, S., 2004. Molecular characterization and analysis of operon encoding the antifungal lipopeptide bacillomycin D. FEMS Microbiol. Lett., 234(1):43–49. [doi:10.1111/j.1574-6968.2004.tb09511.x]

    Article  PubMed  CAS  Google Scholar 

  • Ng, T.B., Wang, H.X., 2001. Panaxagin, a new protein from Chinese ginseng possesses anti-fungal, anti-viral, translation-inhibiting and ribonuclease activities. Life Sci., 68(7):739–749. [doi:10.1016/S0024-3205(00)00970-X]

    Article  PubMed  CAS  Google Scholar 

  • Ngai, P.H.K., Zhao, Z., Ng, T.B., 2005. Agrocybin, an antifungal peptide from the edible mushroom Agrocybe cylindracea. Peptides, 26(2):191–196. [doi:10.1016/j.peptides.2004.09.011]

    Article  PubMed  CAS  Google Scholar 

  • Okigbo, R.N., 2005. Biological control of postharvest fungal rot of yam (Dioscorea spp.) with Bacillus subtilis. Mycopathologia, 159(2):307–314. [doi:10.1007/s11046-004-2454-8]

    Article  PubMed  CAS  Google Scholar 

  • Peypoux, F., Besson, F., Michel, G., 1980. Characterization of a new antibiotic of iturin group bacilloycin D. J. Antibiot., 33(10):1146–1149.

    PubMed  CAS  Google Scholar 

  • Peypoux, F., Pommier, M.T., Marion, D., Ptak, M., Das, B.C., Michel, G., 1986. Revised structure of mycosubtilin, a lipidolipid antibiotic from B. subtilis. J. Antibiot., 39(5): 636–641.

    PubMed  CAS  Google Scholar 

  • Peypoux, F., Bonmatin, J.M., Wallach, J., 1999. Recent trends in the biochemistry of surfactin. Appl. Microbiol. Biotechnol., 51(5):553–563. [doi:10.1007/s002530051432]

    Article  PubMed  CAS  Google Scholar 

  • Pressey, R., 1997. Two isoforms of NP24: a thaumatin-like protein in tomato fruit. Phytochemistry, 44(7):1241–1245. [doi:10.1016/S0031-9422(96)00667-X]

    Article  PubMed  CAS  Google Scholar 

  • Sengupta, S., Banerjee, A.B., Bose, S.K., 1971. γ-Glutamyl and D- or L-peptide linkages in mycobacillin, a cyclic peptide antibiotic. Biochem. J., 121:839–846.

    PubMed  CAS  Google Scholar 

  • Stein, T., 2005. Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol. Microbiol., 56(4): 845–857. [doi:10.1111/j.1365-2958.2005.04587.x]

    Article  PubMed  CAS  Google Scholar 

  • Theis, T., Marax, F., Salvenmoser, W., Stahl, U., Meyer, V., 2005. New insight into the target site and mode of action of the antifungal protein of Aspergillus giganteus. Res., 156(1):47–56. [doi:10.1016/j.resmic.2004.08.006]

    CAS  Google Scholar 

  • Tsuge, K., Akiyama, T., Shoda, M., 2001. Cloning, sequencing, and characterization of the iturin A operon. J. Bacteriol., 183(21):6265–6273. [doi:10.1128/JB.183.21.6265-6273.2001]

    Article  PubMed  CAS  Google Scholar 

  • Vogelsang, R., Barz, W., 1993. Purification, characterization and differential hormonal regulation of a β-1,3-glucanase and two chitinases from chickpea (Cicer arietinum L.). Planta, 189(1):60–69. [doi:10.1007/BF00201344]

    Article  PubMed  CAS  Google Scholar 

  • Wang, H., Ng, T.B., 2002. Isolation of cicadin, a novel and potent antifungal peptide from juvenile cicadas. Peptides, 23(1):7–11. [doi:10.1016/S0196-9781(01)00573-3]

    Article  PubMed  Google Scholar 

  • Wang, H., Ng, T.B., 2004. Eryngin, a novel antifungal peptide from fruiting bodies of the edible mushroom Pleurotus eryngii. Peptides, 25(1):1–5. [doi:10.1016/j.peptides.2003.11.014]

    Article  PubMed  CAS  Google Scholar 

  • Wang, S.Y., Wu, J.H., Ng, T.B., Ye, X.Y., Rao, P.F., 2004. A non-specific lipid transfer protein with antifungal and antibacterial activities from the mung bean. Peptides, 25(8):1235–1242. [doi:10.1016/j.peptides.2004.06.004]

    Article  PubMed  CAS  Google Scholar 

  • Wulff, E.G., Mguni, C.M., Mortensen, C.N., Keswani, C.L., Hockenhull, J., 2002. Biological control of black rot (Xanthomonas campestris pv. campestris) of brassicas with an antagonistic strain of Bacillus subtilis in Zimbabwe. Eur. J. Plant Pathol., 108(4):317–325. [doi:10.1023/A:1015671031906]

    Article  Google Scholar 

  • Wurms, K., Greenwood, D., Sharrock, K., Long, P., 1999. Thaumatinlike protein in kiwi fruit. J. Sci. Food. Agric., 79(11):1448–1452. [doi:10.1002/(SICI)1097-0010(199908) 79:11〈1448::AID-JSFA381〉3.0.CO;2-3]

    Article  CAS  Google Scholar 

  • Xie, D., Peng, J., Wang, J., Hu, J., Wang, Y., 1998. Purification and properties of antifungal protein X98III from Bacillus subtilis. Acta Microbiologica Sinica, 38(1): 13–19 (in Chinese).

    PubMed  CAS  Google Scholar 

  • Ye, X.Y., Ng, T.B., 2000. Mungin, a novel cyclophilin-like antifungal protein from the mung bean. Biochem. Biophys. Res. Commun., 273(3):1111–1115. [doi:10.1006/bbrc.2000.3067]

    Article  PubMed  CAS  Google Scholar 

  • Ye, X.Y., Ng, T.B., 2002a. Isolation of a new cyclophilin-like protein from chickpeas with mitogenic, antifungal and anti-HIV-1 reverse transcriptase activities. Life Sci., 70(10):1129–1138. [doi:10.1016/S0024-3205(01)01473-4]

    Article  PubMed  CAS  Google Scholar 

  • Ye, X.Y., Ng, T.B., 2002b. Isolation of a novel peroxidase from French bean legumes and first demonstration of antifungal activity of a non-milk peroxidase. Life Sci., 71(14):1667–1680. [doi:10.1016/S0024-3205(02)01925-2]

    Article  PubMed  CAS  Google Scholar 

  • Ye, X.Y., Wang, H.X., Ng, T.B., 1999. First chromatographic isolation of an antifungal thaumatin-like protein from French bean legumes and demonstration of its antifungal activity. Biochem. Biophys. Res. Comun., 263(1):130–134. [doi:10.1006/bbrc.1999.1166]

    Article  CAS  Google Scholar 

  • Ye, X.Y., Wang, H.X., Ng, T.B., 2000. Sativin, a novel antifungal miraculin-like protein isolated from legumes of the sugar snap Pisum sativum var. macrocarpon. Life Sci., 67(7):775–781. [doi:10.1016/S0024-3205(00)00672-X]

    Article  PubMed  CAS  Google Scholar 

  • Ye, X.Y., Ng, T.B., Tsang, P.W.K., Wang, J., 2001. Isolation of a homodimeric lectin with antifungal and antiviral activiral activities from red kidney bean (Phaseolus vulgaris) activities. J. Protein Chem., 20(5):367–375. [doi:10. 1023/A:1012276619686]

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qian Yang.

Additional information

Project supported by the Hi-Tech Research and Development Program (863) of China (No. 2003AA241140) and the Natural Science Foundation of Heilongjiang Province, China (No. C200522)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Yang, Q., Zhao, Lh. et al. Purification and characterization of a novel antifungal protein from Bacillus subtilis strain B29. J. Zhejiang Univ. Sci. B 10, 264–272 (2009). https://doi.org/10.1631/jzus.B0820341

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.B0820341

Key words

CLC number

Navigation