Skip to main content
Log in

CFD analysis of a transfer matrix of exhaust muffler with mean flow and prediction of exhaust noise

  • Published:
Journal of Zhejiang University SCIENCE A Aims and scope Submit manuscript

Abstract

A multi-dimensional computational fluid dynamics (CFD) approach was proposed in this study aiming to calculate the transfer matrix of an engine exhaust muffler in the conditions with and without mean flow. The CFD model of the muffler with absorptive material defined as porous zone was calibrated with the measured noise reduction without mean flow, and was further employed to study the effect of the mean flow on the acoustic performance of the muffler. Furthermore, the exhaust acoustical source was derived from the calculated transfer matrices of six different additional acoustic loads obtained by the proposed CFD approach as well as the measured tail noise based on a multiload least squares method. Finally, the exhaust noise was predicted based on Thevenin’s theorem. The proposed CFD approach was suggested to be able to predict the acoustic performance of a complex muffler considering mean flow (without and with mean flow) and heat transfer, and provide reasonable results of the exhaust noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Boden, H., Åbom, M., 1995. Modeling of fluid machines as sources of sound in duct and pipe systems. Acta Aoustica, 3:549–560.

    Google Scholar 

  • Broatch, A., Margot, X., Gil, A., Denia, F.D., 2005. A CFD approach to the computation of the acoustic response of exhaust mufflers. Journal of Computational Acoustics, 13(2):301–316. [doi:10.1142/S0218396X05002682]

    Article  MATH  Google Scholar 

  • Cheng, Y.R., Seybert, A.F., Wu, T., 1991. A multidomain boundary element solution for silencer and muffler performance prediction. Journal of Sound and Vibration, 151(1):119–129. [doi:10.1016/0022-460X(91)90655-4]

    Article  Google Scholar 

  • Craggs, A., 1989. The application of the transfer matrix and matrix condensation methods with finite elements to duct acoustics. Journal of Sound and Vibration, 132(3): 393–402. [doi:10.1016/0022-460X(89)90633-0]

    Article  MATH  Google Scholar 

  • Davies, P.O.A.L., 1988. Practical flow duct acoustics. Journal of Sound and Vibration, 124(1):91–115. [doi:10.1016/S0022-460X(88)81407-X]

    Article  Google Scholar 

  • Davies, P.O.A.L., Holland, K.R., 1999. I.C. engine intake and exhaust noise assessment. Journal of Sound and Vibration, 223(3):425–444. [doi:10.1006/jsvi.1998.2093]

    Article  Google Scholar 

  • Davies, P.O.A.L., Coelho, J.L., Bhattacharya, M., 1980. Reflection coefficients for an unflanged pipe with flow. Journal of Sound and Vibration, 72(4):543–546. [doi:10. 1016/0022-460X(80)90364-8]

    Article  Google Scholar 

  • Delany, M.E., Bazley, E.N., 1970. Acoustical properties of fibrous absorbent materials. Applied Acoustics, 3(2): 105–116. [doi:10.1016/0003-682X(70)90031-9]

    Article  Google Scholar 

  • Desmons, L., Hardy, J., 1994. A least squares method for evaluation of characteristics of acoustical sources. Journal of Sound and Vibration, 175(3):365–376. [doi:10. 1006/jsvi.1994.1334]

    Article  MATH  Google Scholar 

  • Desmons, L., Hardy, J., Auregan, Y., 1995. Determination of the acoustical source characteristics of an internal combustion engine by using several calibrated loads. Journal of Sound and Vibration, 179(5):869–878. [doi:10.1006/jsvi.1995.0058]

    Article  Google Scholar 

  • Hao, Z.Y., Jia, W.X., Fang, F., 2005. Virtual design and performance prediction of a silencing air cleaner used in an I.C. engine intake system. Journal of Zhejiang University SCIENCE, 6(10):1107–1114. [doi:10.1631/jzus.2005. A1107]

    Google Scholar 

  • Jang, S.H., Ih, J.G., 2000. Refined multiload method for measuring acoustical source characteristics of an intake or exhaust system. Journal of the Acoustical Society of America, 107(6):3217–3225. [doi:10.1121/1.429349]

    Article  Google Scholar 

  • Ji, Z.L., Selamet, A., 2000. Boundary element analysis of three-pass perforated duct mufflers. Noise Control Engineering Journal, 48(5):151–156. [doi:10.3397/1.2827962]

    Article  Google Scholar 

  • Liu, C., Hao, Z.Y., Chen, X.R., 2010. Optimal design of acoustic performance for automotive air-cleaner. Applied Acoustics, 71(5):431–438. [doi:10.1016/j.apacoust.2009.11.010]

    Article  MathSciNet  Google Scholar 

  • Mehdizadeh, O.Z., Paraschivoiu, M., 2005. A three-dimensional finite element approach for predicting the transmission loss in mufflers and silencers with no mean flow. Applied Acoustics, 66(8):902–918. [doi:10.1016/j. apacoust.2004.11.008]

    Article  Google Scholar 

  • Middelberg, J.M., Barber, T.J., Leong, S.S., Byrne, K.P., Leonardi, E., 2004. Computational Fluid Dynamics of the Acoustic Performance of Various Simple Expansion Chamber Mufflers. Proceedings of Acoustics, Gold Coast, Australia, p.123–127.

  • Munjal, M.L., 1987. Acoustic of Ducts and Mufflers. Wiley-Interscience, New York, p.42–121.

    Google Scholar 

  • Munjal, M.L., Prasad, M.G., 1986. On plane-wave propagation in a uniform pipe in the presence of a mean flow and a temperature gradient. Journal of the Acoustical Society of America, 80(5):1501–1506. [doi:10.1121/1.394406]

    Article  Google Scholar 

  • Prasad, M.G., 1987. A four load method for evaluation of acoustical source impedance in a duct. Journal of Sound and Vibration, 114(2):347–356. [doi:10.1016/S0022-460X(87)80159-1]

    Article  Google Scholar 

  • Prasad, M.G., Crocker, M.J., 1984. A note on propagation of acoustic plane waves in a uniform pipe with mean flow. Journal of Sound and Vibration, 95(2):284–289. [doi:10. 1016/0022-460X(84)90550-9]

    Article  Google Scholar 

  • Yasuda, T., Wu, C., Nakagawa, N., Nagamura, K., 2010. Predictions and experimental studies of the tail pipe noise of an automotive muffler using a one dimensional CFD model. Applied Acoustics, 71(8):701–707. [doi:10.1016/j. apacoust.2010.03.001]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-yong Hao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Ly., Hao, Zy. & Liu, C. CFD analysis of a transfer matrix of exhaust muffler with mean flow and prediction of exhaust noise. J. Zhejiang Univ. Sci. A 13, 709–716 (2012). https://doi.org/10.1631/jzus.A1200155

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.A1200155

Keywords

CLC number

Navigation