Skip to main content
Log in

Application of response surface methodology in medium optimization for pyruvic acid production of Torulopsis glabrata TP19 in batch fermentation

  • Published:
Journal of Zhejiang University SCIENCE B Aims and scope Submit manuscript

Abstract

Response surface methodology (RSM) was used to optimize the fermentation medium for enhancing pyruvic acid production by Torulopsis glabrata TP19. In the first step of optimization, with Plackett-Burman design, ammonium sulfate, glucose and nicotinic acid were found to be the important factors affecting pyruvic acid production significantly. In the second step, a 23 full factorial central composite design and RSM were applied to determine the optimal concentration of each significant variable. A second-order polynomial was determined by the multiple regression analysis of the experimental data. The optimum values for the critical components were obtained as follows: ammonium sulfate 0.7498 (10.75 g/L), glucose 0.9383 (109.38 g/L) and nicotinic acid 0.3633 (7.86 mg/L) with a predicted value of maximum pyruvic acid production of 42.2 g/L. Under the optimal conditions, the practical pyruvic acid production was 42.4 g/L. The determination coefficient (R 2) was 0.9483, which ensures adequate credibility of the model. By scaling up fermentation from flask to jar fermentor, we obtained promising results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adinarayana, K., Ellaiah, P., 2002. Response surface optimization of the critical medium components for this production of alkaline protease by a newly isolated Bacillus sp. J. Pharm. Pharm. Sci., 5(3):272–227.

    PubMed  CAS  Google Scholar 

  • Ai, M., Ohdan, K., 1995. Formation of pyruvic acid by oxidative dehydrogenation of lactic acid. Chem. Lett., 24(5):405. [doi:10.1246/cl.1995.405]

    Article  Google Scholar 

  • Burdick, B.A., Schaeffer, J.R., 1987. Co-immobilized coupled enzyme systems on nylon mesh capable of gluconic and pyruvic acid production. Biotechnol. Lett., 9(4):253–258. [doi:10.1007/BF01027159]

    Article  CAS  Google Scholar 

  • Causey, T.B., Shanmugam, K.T., Yomano, L.P., Inram, L.O., 2004. Engineering Escherichia coli for efficient conversion of glucose to pyruvate. Proc. Natl. Acad. Sci. USA, 101(8):2235–2240. [doi:10.1073/pnas.0308171100]

    Article  PubMed  CAS  Google Scholar 

  • Chakravarti, R., Sahai, V., 2002. Optimization of compactin production in chemically defined production medium by Penicillium citrinum using statistical methods. Process Biochem., 38(4):481–486. [doi:10.1016/S0032-9592(02)00138-3]

    Article  CAS  Google Scholar 

  • Conley, W.C., 1984. Computer Optimization Techniques. Petrocelli Books, Princeton, NJ, p.147–163.

    Google Scholar 

  • Eisenberg, A., Seip, J.E., Gavagan, J.E., Payne, M.S., Anton, D.L., DiCosimo, R., 1997. Pyruvic acid production using methylotrophic yeast transformants as catalyst. J. Mol. Catal. B: Enzymatic, 2(4–5):223–232. [doi:10.1016/S1381-1177(96)00021-5]

    Article  CAS  Google Scholar 

  • Ghanem, N.B., Yusef, H.H., Mahrouse, H.K., 2000. Production of Aspergillus terreus xylanase in solid-state cultures: application of the Plackett-Burman experimental design to evaluate nutritional requirements. Bioresour. Technol., 73(2):113–121. [doi:10.1016/S0960-8524(99)00155-8]

    Article  CAS  Google Scholar 

  • Gokhade, D.V., Patil, S.G., Bastawde, K.B., 1991. Optimization of cellulase production by Aspergillus niger NCIM 1207. Appl. Biochem. Biotechnol., 30(2):99–109.

    Google Scholar 

  • Hujanen, M., Linko, S., Linko, Y.Y., Leisola, M., 2001. Optimization of media and cultivation conditions for L. (+)(S)-lactic acid production by Lactobacillus casei NRRL B-441. Appl. Microbiol. Biotechnol., 56(1–2):126–130. [doi:10.1007/s002530000501]

    Article  PubMed  CAS  Google Scholar 

  • Izumi, Y., Matsumura, Y., Tani, Y., Yamada, H., 1982. Pyruvic acid production from 1,2-propanediol by thiamin-requiring Acinetobacter sp. 80-M. Agric. Biol. Chem., 46(3):2673–2679.

    CAS  Google Scholar 

  • Khuri, A.I., Cornell, J.A., 1987. Response Surfaces: Design and Analyses. Dekker, New York.

    Google Scholar 

  • Lhomme, B., Roux, J.C., 1991. Utilization of experimental designs for optimization of Rhizopus arrhizus culture. Bioresour. Technol., 35(3):301–312. [doi:10.1016/09608524(91)90129-8]

    Article  CAS  Google Scholar 

  • Li, Y., Chen, J., Lun, S.Y., 2001a. Efficient pyruvate production by a multi-vitamin auxotroph of Torulopsis glabrata: key role and optimization of vitamin levels. Appl. Microbiol. Biotechnol., 55(6):680–685. [doi:10.1007/s002530100598]

    Article  PubMed  CAS  Google Scholar 

  • Li, Y., Chen, J., Lun, S.Y., 2001b. Biotechnological production of pyruvic acid. Appl. Microbiol. Biotechnol., 57(4):451–459. [doi:10.1007/s002530100804]

    Article  PubMed  CAS  Google Scholar 

  • Mahmoudian, M., Noble, D., Drake, C.S., Middleton, R.F., Montgomery, D.S., Picrcey, J.E., Ramlakhan, D., Todd, M., Dawson, M., 1997. An efficient process for production of N-acetylneuraminic acid using N-acetylneuraminic acid aldolase. Enzyme Microb. Technol., 20(5):393–400. [doi:10.1016/S0141-0229(96)00180-9]

    Article  PubMed  CAS  Google Scholar 

  • Miyata, R., Yonehara, T., 1996. Improvement of fermentative production of pyruvate from glucose by Torulopsis glabrata IFO 0005. J. Ferment. Bioeng., 82(5):475–479. [doi:10.1016/S0922-338X(97)86986-3]

    Article  CAS  Google Scholar 

  • Ogawa, J., Soong, C.L., Masashi, I., Shimizu, S., 2001. Enzymatic production of pyruvate from fumarate—an application of microbial cyclic-imide-transforming pathway. J. Mol. Catal. B: Enzymatic, 11(4–6):355–359. [doi:10.1016/S1381-1177(00)00024-2]

    Article  CAS  Google Scholar 

  • Park, Y.S., Kang, S.W., Lee, J.S., Hong, S.I., Kim, S.W., 2002. Xylanase production in solid state fermertation by Aspergillus niger mutant using statistical experimental designs. Appl. Microbiol. Biotechnol., 58(6):761–766. [doi:10.1007/s00253-002-0965-0]

    Article  PubMed  CAS  Google Scholar 

  • Plackett, R.L., Burman, J.P., 1946. The design of optimum multifactorial experiments. Biometrika, 33(4):305–325. [doi:10.2307/2332195]

    Article  Google Scholar 

  • Puri, S., Beg, Q.K., Gupta, R., 2002. Optimization of alkaline protease from Bacillus sp. by response surface methology. Curr. Microbiol., 44(4):286–290. [doi:10.1007/s00284-001-0006-8]

    Article  PubMed  CAS  Google Scholar 

  • Rama Mohan Reddy, P., Reddy, G., Seenayya, G., 1999. Production of thermostable β-amylase and pullulanase by Clostridium thermosulfurogenes SV2 in solid-state fermentation: screening of nutrients using Plackett-Burman design. Bioprocess Eng., 21(2):175–179. [doi:10.1007/s004490050659]

    Google Scholar 

  • Rosche, B., Leksawasdi, N., Sandford, V., Breuer, M., Hauer, B., Rogers, P., 2002. Enzymatic (R)-phenylacetylcarbinol production in benzaldehyde emulsions. Appl. Microbiol. Biotechnol., 60(1–2):94–100. [doi:10.1007/s00253-002-1084-7]

    PubMed  CAS  Google Scholar 

  • Roufs, J.B., 1996. Pyruvate: does it amp endurance and burn more fat? Muscle Fitness, 57(2):195–197.

    Google Scholar 

  • Sadhukhan, A.K., Ramana Murthy, M.V., Ajaya Kumar, R., Mohan, E.V.S., Vandana, G., Bhar, C., Venkateswara Rao, K., 1999. Optimization of mycophenolic acid production in solid-state fermentation using response surface methodology. J. Ind. Microbiol. Biotechnol., 22(1):33–38. [doi:10.1038/sj.jim.2900597]

    Article  CAS  Google Scholar 

  • Schinschel, C., Simon, H., 1993. Preparation of pyruvate from (R)-lactate with Proteus species. J. Biotechnol., 31(2):191–203. [doi:10.1016/0168-1656(93)90160-O]

    Article  CAS  Google Scholar 

  • Sunitha, I., Subba Rao, M.V., Ayyanna, C., 1998. Optimization of medium constituents and fermentation conditions for the production of L-glutamic acid by the co-immobilized whole cells of Micrococcus glutamicus and Pseudomonas reptilivora. Bioprocess Eng., 18(5):353–359. [doi:10.1007/PL00008995]

    CAS  Google Scholar 

  • Tsujino, T., Ohigashi, S., Sugiyama, S., Kawashiro, K., Hayashi, H., 1992. Oxidation of propylene glycol and lactic acid to pyruvic acid in aqueous phase catalyzed by lead modified alladium-on-carbon and related systems. J. Mol. Catal., 71(1):25–35. [doi:10.1016/0304-5102(92)80005-2]

    Article  CAS  Google Scholar 

  • Uchio, R., Kikuchi, K., Hirose, Y., 1976. Process for Producing Pyruvic Acid by Fermentation. US Patent, No. 3993 543.

  • Yokota, A., Schimizu, H., Terasawa, Y., Takaoka, N., 1994. Pyruvic acid production by a lipoic acid auxotroph of Escherichia coli W1485. Appl. Microbiol. Biotechnol., 41(6):638–643. [doi:10.1007/BF00167278]

    CAS  Google Scholar 

  • Yonehara, T., Miyata, R., 1994. Fermentative production of pyruvate from glucose by Torulopsis glabrata. J. Ferment. Bioeng., 78(2):155–159. [doi:10.1016/0922-338X(94)90255-0]

    Article  CAS  Google Scholar 

  • Yu, X., Hallet, S.G., Sheppard, J., Watson, A.K., 1997. Application of the Plackett-Burman experimental design to evaluate nutritional requirements for the production of Collectotrichum coccodes spores. Appl. Microbiol. Biotechnol., 47(3):301–305. [doi:10.1007/s002530050930]

    Article  CAS  Google Scholar 

  • Zhang, J., Marcin, C., Shifflet, M.A., Salmon, P., Brix, T., Greasham, R., Buokland, B., Chartrain, M., 1996. Development of a defined medium fermentation process for physotigmine production by Streptomyces griseofuscus. Appl. Microbiol. Biotechnol., 44(5):568–575. [doi:10.1007/s002530050601]

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, J., Gao, Nf. Application of response surface methodology in medium optimization for pyruvic acid production of Torulopsis glabrata TP19 in batch fermentation. J. Zhejiang Univ. - Sci. B 8, 98–104 (2007). https://doi.org/10.1631/jzus.2007.B0098

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.2007.B0098

Key words

CLC number

Navigation